【题目】在平面直角坐标系中,已知椭圆的左顶点为,右焦点为,为椭圆上两点,圆.
(1)若轴,且满足直线与圆相切,求圆的方程;
(2)若圆的半径为,点满足,求直线被圆截得弦长的最大值.
【答案】(1)(2)
【解析】
试题(1)确定圆的方程,就是确定半径的值,因为直线与圆相切,所以先确定直线方程,即确定点坐标:因为轴,所以,根据对称性,可取,则直线的方程为,根据圆心到切线距离等于半径得(2)根据垂径定理,求直线被圆截得弦长的最大值,就是求圆心到直线的距离的最小值. 设直线的方程为,则圆心到直线的距离,利用得,化简得,利用直线方程与椭圆方程联立方程组并结合韦达定理得,因此,当时,取最小值,取最大值为.
试题解析:解:(1)
因为椭圆的方程为,所以,.
因为轴,所以,而直线与圆相切,
根据对称性,可取,
则直线的方程为,
即.
由圆与直线相切,得,
所以圆的方程为.
(2)
易知,圆的方程为.
①当轴时,,
所以,
此时得直线被圆截得的弦长为.
②当与轴不垂直时,设直线的方程为,,
首先由,得,
即,
所以(*).
联立,消去,得,
将代入(*)式,
得.
由于圆心到直线的距离为,
所以直线被圆截得的弦长为,故当时,有最大值为.
综上,因为,所以直线被圆截得的弦长的最大值为.
科目:高中数学 来源: 题型:
【题目】某艺术品公司欲生产一款迎新春工艺礼品,该礼品是由玻璃球面和该球的内接圆锥组成,圆锥的侧面用于艺术装饰,如图1.为了便于设计,可将该礼品看成是由圆及其内接等腰三角形绕底边上的高所在直线旋转180°而成,如图2.已知圆的半径为,设,圆锥的侧面积为.
(1)求关于的函数关系式;
(2)为了达到最佳观赏效果,要求圆锥的侧面积最大.求取得最大值时腰的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的左、右焦点分别为,,过且垂直于轴的焦点弦的弦长为,过的直线交椭圆于,两点,且的周长为.
(1)求椭圆的方程;
(2)已知直线,互相垂直,直线过且与椭圆交于点,两点,直线过且与椭圆交于,两点.求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知中, ,点平面,点在平面的同侧,且在平面上的射影分别为,.
(Ⅰ)求证:平面平面;
(Ⅱ)若是中点,求平面与平面所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在新中国成立70周年国庆阅兵庆典中,众多群众在脸上贴着一颗红心,以此表达对祖国的热爱之情,在数学中,有多种方程都可以表示心型曲线,其中有著名的笛卡尔心型曲线,如图,在直角坐标系中,以原点O为极点,x轴正半轴为极轴建立极坐标系.图中的曲线就是笛卡尔心型曲线,其极坐标方程为(),M为该曲线上的任意一点.
(1)当时,求M点的极坐标;
(2)将射线OM绕原点O逆时针旋转与该曲线相交于点N,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知抛物线的焦点是,准线是,抛物线上任意一点到轴的距离比到准线的距离少2.
(1)写出焦点的坐标和准线的方程;
(2)已知点,若过点的直线交抛物线于不同的两点(均与不重合),直线分别交于点,求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设圆的圆心为,直线过点且与轴不重合, 交圆于两点,过作的平行线交于点.
(1)证明为定值,并写出点的轨迹方程;
(2)设,过点作直线,交点的轨迹于两点 (异于),直线的斜率分别为,证明: 为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:过点,过坐标原点作两条互相垂直的射线与椭圆分别交于,两点.
(1)证明:当取得最小值时,椭圆的离心率为.
(2)若椭圆的焦距为2,是否存在定圆与直线总相切?若存在,求定圆的方程;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com