精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥的底面是正方形, 平面,,点上的点,且 .

(1)求证:对任意的 ,都有.

(2)设二面角C-AE-D的大小为 ,直线BE与平面所成的角为 ,

,求的值.

【答案】(1)见解析; (2).

【解析】

(1)因为SD⊥平面ABCD,BDBE在平面ABCD上的射影,由三垂线定理只要证AC

BD即可.(2)先找出θ计算出cosθ,再找到,求出点OBE的距离,再求出sin,

方程得到的值.

(1)证明:连接BE、BD,由底面ABCD是正方形可得ACBD.

SD⊥平面ABCD,BDBE在平面ABCD上的射影,∴ACBE

(2)解:由SD⊥平面ABCD知,∠DBE=φ,

SD⊥平面ABCD,CD平面ABCD,SDCD.

又底面ABCD是正方形,∴CDAD,而SDAD=D,CD⊥平面SAD.

连接AE、CE,过点D在平面SAD内作DFAEF,连接CF,则CFAE,

故∠CFD是二面角C﹣AE﹣D的平面角,即∠CFD=θ.

RtADE中,∵AD=a,DE=λaAE=a

从而DF==

RtCDF中,tanθ==,所以.

过点BEO的垂线BG,因为AC⊥平面BDE,所以AC⊥BG,

所以∠BEO就是直线BE与平面所成的角

设点O到BE的距离为h,则由等面积得

所以

因为,

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知定义在R上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=ax﹣ax+2,若g(2)=a,则f(2)=(
A.2
B.
C.
D.a2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在对人们休闲方式的一次调查中,其中主要休闲方式的选择有看电视和运动,现共调查了100人,已知在这100人中随机抽取1人,抽到主要休闲方式为看电视的人的概率为

(1)完成下列2×2列联表;

休闲方式为看电视

休闲方式为运动

合计

女性

40

男性

30

合计

(2)请判断是否可以在犯错误的概率不超过0.005的前提下认为性别与休闲方式有关系

参考公式

P(K2k)

0.25

0.15

0.10

0.025

0.010

0.005

k

1.323

2.072

2.706

5.024

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了整顿食品的安全卫生,食品监督部门对某食品厂生产的甲、乙两种食品进行了检测调研,检测某种有害微量元素的含量,随机在两种食品中各抽取了10个批次的食品,每个批次各随机地抽取了一件,下表是测量数据的茎叶图(单位:毫克)

规定:当食品中的有害微量元素含量在[0,10]时为一等品,在(10,20]为二等品,20以上为劣质品.
(1)用分层抽样的方法在两组数据中各抽取5个数据,再分别从这5个数据中各选取2个.求甲的一等品数与乙的一等品数相等的概率;
(2)每生产一件一等品盈利50元,二等品盈利20元,劣质品亏损20元.根据上表统计得到的甲、乙两种食品为一等品、二等品、劣质品,的频率分别估计这两种食品为,一等品、二等品、劣质品的概率.若分别从甲、乙食品中各抽取l件,设这两件食品给该厂带来的盈利为X,求随机变量X的概率分布和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣mx(m∈R).
(1)讨论函数f(x)的单调区间;
(2)当m≥ 时,设g(x)=2f(x)+x2的两个极值点x1 , x2(x1<x2)恰为h(x)=lnx﹣cx2﹣bx的零点,求y=(x1﹣x2)h′( )的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在矩形ABCD中,AB=3,BC=4,E,F分别在线段BC,AD上,EF∥AB,将矩形ABEF沿EF折起,记折起后的矩形为MNEF,且平面MNEF⊥平面ECDF.

(1)在线段BC是否存在一点E,使得ND⊥FC ,若存在,求出EC的长并证明;

若不存在,请说明理由.

(2)求四面体NEFD体积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCDA1B1C1D1中,O为底面ABCD的中心,P,Q分别为的中点.

求证:(1)平面D1 BQ∥平面PAO.

(2)求异面直线QD1与AO所成角的余弦值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则(

A.甲的成绩的平均数小于乙的成绩的平均数
B.甲的成绩的中位数等于乙的成绩的中位数
C.甲的成绩的方差小于乙的成绩的方差
D.甲的成绩的极差小于乙的成绩的极差

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设B、C是定点,且均不在平面α上,动点A在平面α上,且sin∠ABC= , 则点A的轨迹为(  )
A.圆或椭圆
B.抛物线或双曲线
C.椭圆或双曲线
D.以上均有可能

查看答案和解析>>

同步练习册答案