精英家教网 > 高中数学 > 题目详情
在△ABC中,|
AB
|=3,|
AC
|=2,点D满足2
BD
=3
DC
,∠BAC=60°,则
AD
BC
=(  )
A、-
8
5
B、
8
5
C、-
9
5
D、
9
5
考点:平面向量数量积的运算
专题:平面向量及应用
分析:根据向量的数量积的运算以及向量的几何意义,即可求出.
解答: 解:∵|
AB
|=3,|
AC
|=2,∠BAC=60°,
AB
AC
=|
AB
|•|
AC
|cos60°=3×2×
1
2
=3,
∵2
BD
=3
DC

BD
=
3
5
BC

AD
BC
=(
AB
+
BD
BC

=(
AB
+
3
5
BC
BC

=
AB
(
AC
-
AB)
+
3
5
AC
-
AB
2
=
AB
AC
-|
AB
|2+
3
5
(|
AB
|2+|
AC
|2-2
AB
AC

=3-9+
3
5
(9+4-6)
=-
9
5

故选:C
点评:本题考查了向量的数量积的运算以及向量的几何意义,属于中档题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=|x|-1,x∈{-2,-1,0,1,2}的值域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直线PA,QC都与正方形ABCD所在平面垂直,AB=PA=2QC=2,AC与BD相交于点O,E在线段PD上且CE∥平面PBQ
(1)求证:OP⊥平面QBD;
(2)求二面角E-BQ-P的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=m-|x-1|-2|x+1|.
(Ⅰ)当m=5时,求不等式f(x)>2的解集;
(Ⅱ)若二次函数y=x2+2x+3与函数y=f(x)的图象恒有公共点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,已知a1=1,n≥2时,an=
1
3
an-1+
2
3n-1
-
2
3
.数列{bn}满足:bn=3n-1(an+1).
(1)求证:数列{bn}是等差数列;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C1的参数方程为
x=-2+
10
cosθ
y=
10
sinθ
为参数),曲线C2的极坐标方程为ρ=2cosθ+6sinθ,问曲线C1,C2是否相交,若相交请求出公共弦的方程,若不相交,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(a1+a2)(b1+b2+b3)(c1+c2+c3+c4)展开式中,形如axbxcx的项称为同序项,形如axbxcy,axbycx,aybxcx(x≠y)的项称为次序项,如a2b2c2q是一个同序项,a1b1c3是一个次序项.从展开式中任取两项,恰有一个同序项和一个次序项的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,an>0,Sn为其前n项和,2Sn=4an-1.
(1)求数列{an}的通项公式;
(2)数列{bn}满足对任意n∈N*,都有b1an+b2an-1+…+bna1=2n-
1
2
n-1,求数列{bn}的第5项b5

查看答案和解析>>

科目:高中数学 来源: 题型:

在Rt△ABC中,CA=CB=3,M,N是斜边AB上的两个动点,且MN=
2
,则
CM
CN
的取值范围为(  )
A、[3,6]
B、[4,6]
C、[2,
5
2
]
D、[2,4]

查看答案和解析>>

同步练习册答案