(I)证明:取DE中点N,连接MN,AN
在△EDC中,M、N分别为EC,ED的中点,所以MN∥CD,且MN=
CD.
由已知AB∥CD,AB=
CD,所以MN∥AB,且MN=AB.
所以四边形ABMN为平行四边形,所以BM∥AN
又因为AN?平面ADEF,且BM?平面ADEF,
所以BM∥平面ADEF;
(II)证明:在矩形ADEF中,ED⊥AD,
又因为平面ADEF⊥平面ABCD,且平面ADEF∩平面ABCD=AD,
所以ED⊥平面ABCD,所以ED⊥BC.
在直角梯形ABCD中,AB=AD=1,CD=2,可得BC=
在△BCD中,BD=BC=
,CD=2,
因为BD
2+BC
2=CD
2,所以BC⊥BD.
因为BD∩DE=D,所以BC⊥平面BDE,
(Ⅲ)解:取CD中点G,连接MG,则MG∥DE且MG=
∵ED⊥平面ABCD
∴MG⊥平面ABCD
∵BC⊥DB且BC=BD=
∴V
C-MBD=V
M-BCD=
=
.
分析:(I)取DE中点N,连接MN,AN,由三角形中位线定理,结合已知中AB∥CD,AB=AD=1,CD=2,易得四边形ABMN为平行四边形,所以BM∥AN,再由线面平面的判定定理,可得BM∥平面ADEF;
(II)由已知中矩形ADEF与梯形ABCD所在的平面互相垂直,易得ED⊥平面ABCD,进而ED⊥BC,由勾股定理,我们易判断出△BCD中,BC⊥BD,由线面垂直的判定定理可得BC⊥平面BDE;
(Ⅲ)取CD中点G,连接MG,利用V
C-MBD=V
M-BCD,即可求得结论.
点评:本题考查的知识点是直线与平面平行的判定,直线与平面垂直的判定,三棱锥体积的计算,熟练掌握空间直线与平面不同位置关系(平行和垂直)的判定定理、性质定理、定义及几何特征是解答本题的关键.