精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆过点

(Ⅰ)求椭圆的方程,并求其离心率;

(Ⅱ)过点轴的垂线,设点为第四象限内一点且在椭圆上(点不在直线上),直线关于的对称直线与椭圆交于另一点.设为坐标原点,判断直线与直线的位置关系,并说明理由.

【答案】(Ⅰ),离心率.(Ⅱ)直线与直线平行.见解析

【解析】

(Ⅰ)将点代入到椭圆方程,解得的值,根据,得到的值,从而求出离心率;(Ⅱ)直线,点,将直线与椭圆联立,得到,从而得到的斜率,得到,得到直线与直线平行.

解:(Ⅰ)由椭圆过点

可得,解得

所以

所以椭圆的方程为,离心率

(Ⅱ)直线与直线平行.

证明如下:由题意,设直线

设点

所以,所以

同理

所以

因为在第四象限,所以,且不在直线上,所以

,故,所以直线与直线平行.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若给定椭圆和点,则称直线为椭圆C伴随直线

1)若在椭圆C上,判断椭圆C与它的伴随直线的位置关系(当直线与椭圆的交点个数为0个、1个、2个时,分别称直线与椭圆相离、相切、相交),并说明理由;

2)命题:若点在椭圆C的外部,则直线与椭圆C必相交.写出这个命题的逆命题,判断此逆命题的真假,说明理由;

3)若在椭圆C的内部,过N点任意作一条直线,交椭圆CAB,交M点(异于AB),设,问是否为定值?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在底面为矩形的四棱锥中,平面平面.

1)证明:

2)若,设中点,求直线与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某加油站拟建造如图所示的铁皮储油罐(不计厚度,长度单位为米),其中储油罐的中间为圆柱形,左右两端均为半球形,(为圆柱的高,为球的半径,).假设该储油罐的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为千元,半球形部分每平方米建造费用为千元.设该储油罐的建造费用为千元.

(1) 写出关于的函数表达式,并求该函数的定义域;

(2) 若预算为万元,求所能建造的储油罐中的最大值(精确到),并求此时储油罐的体积(单位: 立方米,精确到立方米).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是各项均为正数的等差数列,其公差大于零.若线段的长分别为,则( .

A.对任意的,均存在以为三边的三角形

B.对任意的,均不存在以为三边的三角形

C.对任意的,均存在以为三边的三角形

D.对任意的,均不存在以为三边的三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,为坐标原点,CD两点的坐标为,曲线上的动点P满足.又曲线上的点AB满足.

1)求曲线的方程;

2)若点A在第一象限,且,求点A的坐标;

3)求证:原点到直线AB的距离为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】菱形中,平面

1)证明:直线平面

2)求二面角的正弦值;

3)线段上是否存在点使得直线与平面所成角的正弦值为?若存在,求;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设双曲线方程为,过其右焦点且斜率不为零的直线与双曲线交于AB两点,直线的方程为AB在直线上的射影分别为CD.

1)当垂直于x轴,时,求四边形的面积;

2的斜率为正实数,A在第一象限,B在第四象限,试比较1的大小;

3)是否存在实数,使得对满足题意的任意,直线和直线的交点总在轴上,若存在,求出所有的值和此时直线交点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆为椭圆的左、右焦点,为椭圆上一点,且.

1)求椭圆的标准方程;

2)设直线,过点的直线交椭圆于两点,线段的垂直平分线分别交直线、直线两点,当最小时,求直线的方程.

查看答案和解析>>

同步练习册答案