精英家教网 > 高中数学 > 题目详情

给出下列命题:①函数y=x0与y=1表示同一个函数;②函数y=x3x∈(-1,1]是奇函数;③若偶函数y=f(x)且在(-∞,0)上是增函数,则函数y=f(x)在(0,+∞)上是减函数;其中正确命题的个数有


  1. A.
    0个
  2. B.
    1个
  3. C.
    2个
  4. D.
    3个
B
分析:对于①考查两个函数的定义域即可;选项②③中主要涉及奇偶性和对称性,奇偶性用定义判断,看f(-x)和f(x)的关系,注意奇偶函数的定义域的对称性,若定义域不关于原点对称,一定是非奇非偶函数.
解答:对于①,y=1定义域为R,y=x0的定义域为x≠0,故不是同一个函数,故A错;
对于②定义域(-1,1]不关于原点对称,一定是非奇非偶函数,故假命题;
对于③若偶函数y=f(x),图象关于y轴对称,且在(-∞,0)上是增函数,则函数y=f(x)在(0,+∞)上是减函数,结论正确;
其中正确命题的个数有1
故选B.
点评:本题以命题真假为载体,考查函数的奇偶性和对称性,属基本题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列命题:
①函数f(x)=4cos(2x+
π
3
)
的一条对称轴是直线x=-
12

②已知函数f(x)=min{sinx,cosx},则f(x)的值域为[-1,
2
2
]

③若α,β均为第一象限角,且α>β,则sinα>sinβ.
其中真命题的个数为(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
(3a-1)x-2  x<1
logax         x≥1
,现给出下列命题:
①函数f(x)的图象可以是一条连续不断的曲线;
②能找到一个非零实数a,使得函数f (x)在R上是增函数;
③a>1时函数y=f (|x|) 有最小值-2.
其中正确的命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为D,若存在非零实数l使得对于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),则称f(x)为M上的“l高调函数”.现给出下列命题:
①函数f(x)=2x为R上的“1高调函数”;
②函数f(x)=sin2x为R上的“A高调函数”;
③如果定义域为[-1,+∞)的函数f(x)=x2为[-1,+∞)上“m高调函数”,那么实数m的取值范围是[2,+∞);
其中正确的命题是
①②③
①②③
.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①函数y=sin|x|不是周期函数;        ②函数y=tanx在定义域内是增函数;
③函数y=|cos2x+
1
2
|
的周期是
π
2
;    ④函数y=sin(x+
2
)
是偶函数.
其中正确的命题的序号是
①④
①④

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①函数y=cos(
2
3
x+
π
2
)
是奇函数;②函数y=sinx+cosx的最大值为
3
2

③函数y=tanx在第一象限内是增函数;
④函数y=sin(2x+
π
2
)
的图象关于直线x=
π
12
成轴对称图形.
其中正确的命题序号是

查看答案和解析>>

同步练习册答案