精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
3
sinxcosx-cos(2x+
π
3
)-cos2x
(Ⅰ)求函数f(x)的最小正周期及单调增区间;
(Ⅱ)若函数f(x)的图象向右平移m(m>0)个单位后,得到的图象关于原点对称,求实数m的最小值.
考点:三角函数中的恒等变换应用,三角函数的周期性及其求法,函数y=Asin(ωx+φ)的图象变换
专题:三角函数的图像与性质
分析:(Ⅰ)原式可化为f(x)=2sin(2x-
π
6
)-
1
2
,故根据三角函数的图象和性质可求最小正周期及单调增区间;
(Ⅱ)先写出函数f(x)的图象向右平移m(m>0)个单位后得到的解析式,图象关于原点对称即有-2m-
π
6
=kπ,从而得解.
解答: 解:(Ⅰ)f(x)=
3
2
sin2x-(cos2xcos
π
3
-sin2xsin
π
3
)-
cos2x+1
2

=
3
sin2x-cos2x-
1
2

=2sin(2x-
π
6
)-
1
2

∴f(x)的最小正周期T=π.
当2kπ-
π
2
≤2x-
π
6
≤2kπ+
π
2
(k∈Z).
即有kπ-
π
6
≤x≤kπ+
π
3
(k∈Z)时,函数f(x)单调递增,
故所求区间为[kπ-
π
6
,kπ+
π
3
](k∈Z);
(Ⅱ)函数f(x)的图象向右平移m(m>0)个单位后得:
g(x)=2sin[2(x-m)-
π
6
]-
1
2

要使g(x)的图象关于原点对称,只需要-2m-
π
6
=kπ(k∈Z),
即有m=
k
2
π-
π
12
,所以m的最小值为
12
点评:本题主要考察了三角函数中的恒等变换应用,三角函数的周期性及其求法以及函数y=Asin(ωx+φ)的图象变换,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)是定义在(-2,2)上的奇函数,且在(-2,2)上的减函数,若函数f(x)满足:f(m-1)+f(2m-1)>0,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(sinx,cosx)、
b
=(sinx,3cosx)、
c
=(-cosx,-sinx),f(x)=
a
•(
b
-
c
).
(1)求函数f(x)的最大值和最小正周期.
(2)f(x)按向量(
π
6
,1)平移后得到g(x),求g(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益(单位:元)满足R(x)=
400x-
1
2
x2,0≤x≤400
80000,x>400
其中x(单位:台)是仪器的月产量.
(1)将利润表示为月产量的函数f(x);
(2)当月产量为何值时,公司利润最大?最大为多少元?(总收益=总成本+利润)

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=x2+x(-1≤x≤3)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数fx)=tan(2x+
π
4
).
(1)求fx)的定义域与最小正周期;
(2)设α∈(0,
π
4
),若f(
α
2
=2cos 2α,求α的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,b>0,a+b=1,则下列结论正确的有
 

b
a
+
a
b
>2;
②ab的最大值为
1
4

③a2+b2的最小值为
1
2

1
a
+
4
b
的最大值为9;
⑤a(2b-1)的最大值为
1
8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的首项为a1=5,前n项和为Sn,且Sn+1=2Sn+n+5(n∈N+).
(1)求证:数列{an+1}成等比数列;
(2)设bn=nan,求{bn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2是椭圆
x2
100
+
y2
64
=1的两个焦点,P是椭圆上任意一点.
(1)求PF1•PF2的最大值.
(2)若∠F1PF2=
π
3
,求△F1PF2的面积.

查看答案和解析>>

同步练习册答案