精英家教网 > 高中数学 > 题目详情

【题目】如图,在底面为矩形的四棱锥中, .

(1)证明:平面平面

(2)若异面直线所成角为 ,求二面角的大小.

【答案】(1)证明见解析;(2) .

【解析】试题分析:

(1)由题意结合几何关系可证得平面,结合面面垂直的判断定理即可证得平面平面.

(2)建立空间直角坐标系,结合半平面的法向量可得二面角的大小是.

试题解析:

(1)证明:由已知四边形为矩形,得

,∴平面.

,∴平面.

平面,∴平面平面.

(2)解:以为坐标原点,建立如图所示的空间直角坐标系.

,则

所以 ,则,即

解得舍去).

是平面的法向量,则,即

可取.

是平面的法向量,则

可取,所以

由图可知二面角为锐角,所以二面角的大小为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知为直角坐标系的坐标原点,双曲线 上有一点),点轴上的射影恰好是双曲线的右焦点,过点作双曲线两条渐近线的平行线,与两条渐近线的交点分别为 ,若平行四边形的面积为1,则双曲线的标准方程是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解答
(1)求证:函数y=x+ 有如下性质:如果常数a>0,那么该函数在(0, ]上是减函数,在[ ,+∞)上是增函数.
(2)若f(x)= ,x∈[0,1],利用上述性质,求函数f(x)的值域;
(3)对于(2)中的函数f(x)和函数g(x)=﹣x﹣2a,若对任意x1∈[0,1],总存在x2∈[0,1],使得g(x2)=f(x1),求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解人们对于国家新颁布的“生育二胎放开”政策的热度,现在某市进行调查,随机调查了50人,他们年龄大点频率分布及支持“生育二胎”人数如下表:

年龄

频率

5

10

15

10

5

5

支持“生育二胎”

4

5

12

8

2

1

(1)由以上统计数据填下面2乘2列联表,并问是否有99%的把握认为以45岁为分界点对“生育二胎放开”政策的支持度有差异:

(2)若对年龄在的被调查人中随机选取两人进行调查,恰好这两人都支持“生育二胎放开”的概率是多少?

参考数据: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】集合A={x|(x﹣3)(x﹣a)=0,a∈R},B={x|(x﹣4)(x﹣1)=0},则集合A∪B,A∩B中元素的个数不可能是(
A.4和1
B.4和0
C.3和1
D.3和0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是圆心为的圆上的动点,点,线段的垂直平分线交于点.

(1)求动点的轨迹的方程;

(2)矩形的边所在直线与曲线均相切,设矩形的面积为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线平面,直线平面,给出下列命题:

,则;   ,则

,则;   ,则.

其中正确命题的序号是_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆E: (a>b>0),其长轴长是短轴长的 倍,过焦点且垂直于x轴的直线被椭圆截得的弦长为2
(1)求椭圆E的方程;
(2)设过右焦点F2且与x轴不垂直的直线l交椭圆E于P,Q两点,在线段OF2(O为坐标原点)上是否存在点M(m,0),使得以MP,MQ为邻边的平行四边形是菱形?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若集合A={x|kx2﹣2x﹣1=0}只有一个元素,则实数k的取值集合为(
A.{﹣1}
B.{0}
C.{﹣1,0}
D.(﹣∞,﹣1]∪{0}

查看答案和解析>>

同步练习册答案