精英家教网 > 高中数学 > 题目详情
7.已知点A(x0,y0)是抛物线y2=2px(p>0)上一点,且它在第一象限内,焦点为F,O坐标原点,若|AF|=$\frac{3p}{2}$,|AO|=2$\sqrt{3}$,则此抛物线的准线方程为(  )
A.x=-4B.x=-3C.x=-2D.x=-1

分析 根据抛物线的定义可知x0+$\frac{p}{2}$=$\frac{3p}{2}$,再求出y0,根据两点之间的距离公式即可求出p的值,再求出准线方程.

解答 解:因为x0+$\frac{p}{2}$=$\frac{3p}{2}$,所以x0=p,y0=$\sqrt{2}$p.
又|AO|=2$\sqrt{3}$,
因为p2+($\sqrt{2}$p)2=12,
所以p=2,准线方程为x=-1.
故选:D

点评 本题考查了抛物线的定义和准线方程以及两点之间的距离公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=x•ex-1,g(x)=lnx+kx,且f(x)≥g(x)对任意的x∈(0,+∞)恒成立,则实数k的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.“$cosα=\frac{1}{2}$”是“$α=\frac{π}{3}$”的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知向量$\overrightarrow{a}$=(cosα,sinα),$\overrightarrow{b}$=(-2,2).
(1)若$\overrightarrow{a}•\overrightarrow{b}$=$\frac{14}{5}$,求(sinα+cosα)2的值;
(2)若$\overrightarrow{a}∥\overrightarrow{b}$,求sin(π-α)•sin($\frac{π}{2}+α$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知关于x的二次函数f(x)=ax2-2bx+1,设点(a,b)是区域$\left\{\begin{array}{l}x+y-2≤0\\ x+1≥0\\ y+1≥0\end{array}\right.$内的随机点,则函数f(x)在区间[1,+∞)上是增函数的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{8}$C.$\frac{7}{16}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.双曲线$\frac{x^2}{16}-\frac{y^2}{8}=1$的实轴长是(  )
A.2B.$4\sqrt{2}$C.$2\sqrt{2}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某公司经营一批进价为每件4百元的商品,在市场调查时发现,此商品的销售单价x(百元)与日销售量y(件)之间有如下关系:
x(百元)56789
y(件)108961
(1)求y关于x的回归直线方程;
(2)借助回归直线方程请你预测,销售单价为多少百元(精确到个位数)时,日利润最大?
相关公式:$\widehatb=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x•\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\widehata=\overline y-b\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.以下四个命题中,错误命题的序号是(  )
A.△ABC中,若a>b,则sinA>sinB
B.函数y=f(x)在x=x0处取得极值的充要条件是f'(x0)=0
C.等差数列{an}中,a4=4,a5+a11=16则a12=12
D.双曲线$\frac{x^2}{16}-\frac{y^2}{9}=1$的焦点到渐近线的距离3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.集合M={-1,0,1},N={x∈Z|-1<x<1},则M∩N等于(  )
A.{-1,0,1}B.{-1}C.{1}D.{0}

查看答案和解析>>

同步练习册答案