精英家教网 > 高中数学 > 题目详情
如图是函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)
的一段图象.
(I)求φ的值及函数f(x)的解析式;
(II)求函数g(x)=f(x-
π
4
)
的最值及零点.
分析:(I)利用三角函数的图象直接求出A,推出函数的周期,利用周期公式求出ω,图象过点(-
π
12
,0)
,结合φ的范围求φ的值,即可得到函数f(x)的解析式;
(II)通过函数g(x)=f(x-
π
4
)
,求出它的表达式,利用正弦函数的最值以及x的取值,求出函数的最值,利用正弦函数的零点求出函数的零点.
解答:解:(I)由图可知,A=2.…(2分)
函数的周期T=2[
12
-(-
π
12
)]=π
,所以ω=
T
=2
.…(4分)
因为图象过点(-
π
12
,0)
,所以2sin[2(-
π
12
)+φ]=0
,即sin(φ-
π
6
)=0

所以φ-
π
6
=kπ(k∈Z)
.因为|φ|<
π
2
,所以φ=
π
6

所以f(x)=2sin(2x+
π
6
)
.…(7分)
(II)依题意,g(x)=2sin[2(x-
π
4
)+
π
6
]=2sin(2x-
π
3
)

2x-
π
3
=2kπ+
π
2
,即x=kπ+
12
,k∈Z
时,y取得最大值,且最大值等于2.
2x-
π
3
=2kπ-
π
2
,k∈Z
,即x=kπ-
π
12
,k∈Z
时,y取得最小值,且最小值等于-2.…(10分)
因为2x-
π
3
=kπ,k∈Z
时,g(x)=0,
所以,函数g(x)零点为
2
+
π
6
(k∈Z)
.…(12分)
点评:本题是中档题,考查三角函数的解析式的求法,函数的图象的应用,正弦函数的基本知识,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图是函数f(x)=
sinπx
x2-bx+c
的图象的一部分,若图象的最高点的纵坐标为
4
3
,则b+c=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是函数f(x)=
1
2
sinx
 (x∈[0,π])的图象,其中B为顶点,若在f(x)的图象与x轴所围成的区域内任意投进一个点P,则点P落在△ABO内的概率为
π
4
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是函数f(x)=x3+bx2+cx+d的大致图象,则x+x等于        (   )

A.         B.         C.           D.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年湖北岳中高中一轮复习理科数学滚动测试三解析版 题型:选择题

如图是函数f(x)的导函数y=f′(x)的图象,则下面判断正确的是(  )

A.在(-2,1)内f(x)是增函数B.在(1,3)内f(x)是减函数

C.在(4,5)内f(x)是增函数D.在x=2时,f(x)取到极小值

 

查看答案和解析>>

同步练习册答案