精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,以原点为极点,轴的正半轴为极轴,以相同的长度单位建立极坐标系.已知直线的极坐标方程为,曲线的极坐标方程为.

1)设为参数,若,求直线的参数方程;

2)已知直线与曲线交于,设,且,求实数的值.

【答案】1为参数);(2.

【解析】

1)由直线的极坐标方程求得直角坐标方程,将代入,得到,即可得到直线的参数方程;

2)将直线的参数方程与的直角坐标方程联立,得,由,得,由根与系数的关系即可计算出的值.

1)直线的极坐标方程为

所以,即

因为为参数,将代入上式得

所以直线的参数方程为为参数);

2)由,得

代入,得

将直线的参数方程与的直角坐标方程联立,

,解得

设点和点分别对应参数为上述方程的根,

由韦达定理,

由题意得,

因为,所以

解得,或

因为,所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)讨论上的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的倾斜角为,且经过点,以坐标原点O为极点,轴正半轴为极轴建立极坐标系,直线,从原点O作射线交于点M,点N为射线OM上的点,满足| ,记点N的轨迹为曲线C

1)①设动点,记是直线的向上方向的单位方向向量,且,以t为参数求直线的参数方程

②求曲线C的极坐标方程并化为直角坐标方程;

2)设直线与曲线C交于PQ两点,求的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,求函数处的切线方程;

2)讨论极值点的个数;

3)若的一个极小值点,且,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合,从集合中取出个不同元素,其和记为;从集合中取出个不同元素,其和记为.若,则的最大值为____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为

1)求曲线的直角坐标方程及直线的普通方程;

2)设直线与曲线交于两点(点在点左边)与直线交于点.求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,过曲线上的点处的切线方程为

(1)若函数处有极值,求的解析式;

(2)在(1)的条件下,求函数在区间上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2021年开始,我省将试行“3+1+2“的普通高考新模式,即除语文、数学、外语3门必选科目外,考生再从物理、历史中选1门,从化学、生物、地理、政治中选2门作为选考科目.为了帮助学生合理选科,某中学将高一每个学生的六门科目综合成绩按比例均缩放成5分制,绘制成雷达图.甲同学的成绩雷达图如图所示,下面叙述一定不正确的是(  )

A.甲的物理成绩领先年级平均分最多

B.甲有2个科目的成绩低于年级平均分

C.甲的成绩从高到低的前3个科目依次是地理、化学、历史

D.对甲而言,物理、化学、地理是比较理想的一种选科结果

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称,旨在积极发展我国与沿线国家经济合作关系,共同打造政治互信、经济融合、文化包容的命运共同体.2015年以来,“一带一路”建设成果显著.如图是20152019年,我国对“一带一路”沿线国家进出口情况统计图,下列描述错误的是( )

A.这五年,出口总额之和比进口总额之和

B.这五年,2015年出口额最少

C.这五年,2019年进口增速最快

D.这五年,出口增速前四年逐年下降

查看答案和解析>>

同步练习册答案