精英家教网 > 高中数学 > 题目详情

【题目】如图,在平面直角坐标系中,椭圆 ()的短轴长为2,椭圆上的点到右焦点距离的最大值为.过点作斜率为的直线交椭圆两点(),是线段的中点,直线交椭圆两点.

(1)求椭圆的标准方程;

(2)若,求的值;

(3)若存在直线,使得四边形为平行四边形,求的取值范围.

【答案】(1);(2);(3.

【解析】

1)由题意列出关于abc的方程,解得ab则可得椭圆的方程.

2)联立直线与椭圆的方程,利用韦达定理可得D的坐标,进而得到直线的方程,再与椭圆的方程联立,可得M的的坐标,代入已知的向量关系式中,解得k即可.

3)联立直线与椭圆的方程,利用韦达定理及,得到关于mk的不等关系式,再将四边形为平行四边形转化为向量关系,得到mk的等量关系,代入不等式消去k可得m的范围.

(1)由条件,

解得

所以椭圆的标准方程为.

(2)当时,直线的方程为

消去得:.

因为点在椭圆内,所以.

所以,所以.

所以,直线的方程为:.

消去得:,所以 .

因为,所以

因为,解得.

(3)直线的方程为

消去得:.

所以,即(*),

,所以.

因为关于原点对称,

由(2)易知,.

由四边形为平行四边形,所以

可得,即.

由于将代入(*)式恒成立,

所以当时,

因为,所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,在长方体ABCDA1B1C1D1,若AB=BCEF分别是AB1BC1的中点,则下列结论中不成立的是(

A.EFBB1垂直B.EF⊥平面BDD1B1

C.EFC1D所成的角为45°D.EF∥平面A1B1C1D1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某书店刚刚上市了《中国古代数学史》,销售前该书店拟定了5种单价进行试销,每种单价(元)试销l天,得到如表单价(元)与销量(册)数据:

单价(元)

18

19

20

21

22

销量(册)

61

56

50

48

45

(l)根据表中数据,请建立关于的回归直线方程:

(2)预计今后的销售中,销量(册)与单价(元)服从(l)中的回归方程,已知每册书的成本是12元,书店为了获得最大利润,该册书的单价应定为多少元?

附:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥中,底面为平行四边形,侧面 分别是的中点,已知.

(Ⅰ)证明:平面

(Ⅱ)证明:

(Ⅲ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是两条不同的直线,是三个不同的平面,给出下列四个命题:

①若,则

②若,则

③若,则

④若,则

其中正确命题的序号是(

A.①和②B.②和③C.③和④D.①和④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知椭圆)的上顶点为,圆经过点

(1)求椭圆的方程;

(2)过点作直线交椭圆两点,过点作直线的垂线交圆于另一点.若△PQN的面积为3,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】空气质量指数是检测空气质量的重要参数,其数值越大说明空气污染状况越严重,空气质量越差.某地环保部门统计了该地区某月1日至24日连续24天的空气质量指数,根据得到的数据绘制出如图所示的折线图,则下列说法错误的是( )

A. 该地区在该月2日空气质量最好

B. 该地区在该月24日空气质量最差

C. 该地区从该月7日到12日持续增大

D. 该地区的空气质量指数与这段日期成负相关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,(常数).

(I)当的图象相切时,求的值;

(Ⅱ)设,讨论上零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正三棱锥中,侧棱长为3,底面边长为2EF分别为棱ABCD的中点,则下列命题正确的是( )

A.EFAD所成角的正切值为B.EFAD所成角的正切值为

C.AB与面ACD所成角的余弦值为D.AB与面ACD所成角的余弦值为

查看答案和解析>>

同步练习册答案