精英家教网 > 高中数学 > 题目详情
7.下列各组中的两个函数是相同函数的为(  )
A.f(x)=$\frac{(x+3)(x-5)}{x+3}$,g(x)=x-5B.f(x)=x,g(x)=$\sqrt{x^2}$
C.f(x)=x,g(x)=$\root{3}{x^3}$D.f(x)=$\sqrt{x+1}\sqrt{x-1}$,g(x)=$\sqrt{(x+1)(x-1)}$

分析 根据两个函数的定义域相同,对应关系也相同,即可判断它们是同一函数.

解答 解:对于A,函数f(x)=$\frac{(x+3)(x-5)}{x+3}$=x-5(x≠-3),与g(x)=x-5(x∈R)的定义域不同,∴不是同一函数;
对于B,函数f(x)=x(x∈R),与g(x)=$\sqrt{{x}^{2}}$=|x|(x∈R)的对应关系不同,∴不是同一函数;
对于C,函数f(x)=x(x∈R),与g(x)=$\root{3}{{x}^{3}}$=x(x∈R)的定义域相同,对应关系也相同,∴是同一函数;
对于D,函数f(x)=$\sqrt{x+1}$$\sqrt{x-1}$=$\sqrt{(x+1)(x-1)}$(x≥1),与g(x)=$\sqrt{(x+1)(x-1)}$(x≤-1或x≥1)的定义域不同,∴不是同一函数.
故选:C.

点评 本题考查了判断两个函数是否为同一函数的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.0°~90°间的角可表示为(  )
A.{a|0°<a<90°}B.{a|0°≤a<90°}C.{a|0°<a≤90°}D.{a|0°≤a≤90°}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{1}{2}$-$\frac{b}{{2}^{x}+a}$是R上的奇函数,且f(1)=$\frac{1}{6}$.
(1)求函数f(x)的解析式;
(2)判断f(x)在R上的单调性并用定义证明;
(3)当x∈[1,2]时,f(x)>-x2+2x+m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x-3)=lg$\frac{x}{x-6}$.
(1)求函数f(x)的表达式;
(2)判断并证明函数f(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.定义域为R的函数f(x)对任意的x都有f(2+x)=f(2-x),且其导函数f′(x)满足:$\frac{f′(x)}{2-x}$>0,则当2<a<4时,下列成立的是(  )
A.f(log2a)<f(2)<f(2aB.f(2a)<f(log2a)<f(2)C.f(2a))<f(2)<f(log2a)D.f(log2a)<f(2a)<f(2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知向量$\overrightarrow a=({1,0})$,$\overrightarrow b=(cosθ,sinθ)$,$θ∈[{-\frac{π}{4},\frac{π}{2}}]$,则$|{\overrightarrow a+\overrightarrow b}|$的取值范围是(  )
A.$[0,\sqrt{2}]$B.[0,2]C.[1,2]D.$[\sqrt{2},2]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.下列命题中:
①若a+b不是偶数,则a,b不都是奇数;
②抛物线y=$\frac{1}{4}$x2的焦点坐标是($\frac{1}{16}$,0);
③若p∧q为假命题,则p、q均为假命题;
④若椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{25}$=1的两焦点为F1、F2,且弦AB过F1点,则△ABF2的周长为20.  
其中正确的命题的序号是①④(填上你认为正确命题的所有序号).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交a元(2≤a≤5)的管理费,预计当每件产品的售价为x元(9≤x≤11)时,一年的销售量为(12-x)万件.
(Ⅰ)求分公司一年的利润L(万元)与每件产品的售价x的函数关系式;
(Ⅱ)当每件产品的售价为多少元时,分公司一年的利润L最大,并求出L的最大值Q(a).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.计算:(xnex)′=nxn-1ex+xnex

查看答案和解析>>

同步练习册答案