分析 利用基本不等式,即可证明结论.
解答 证明:$x>0⇒\sqrt{x}=\sqrt{1•x}≤\frac{1+x}{2}=\frac{x}{2}+\frac{1}{2}$,
$y>0⇒\sqrt{y}=\sqrt{1•y}≤\frac{1+y}{2}=\frac{y}{2}+\frac{1}{2}$,
$z>0⇒\sqrt{z}=\sqrt{1•z}≤\frac{1+z}{2}=\frac{z}{2}+\frac{1}{2}$
当且仅当x=y=z=1时,不等式等号成立
三个不等式相加可得$\sqrt{x}+\sqrt{y}+\sqrt{z}≤\frac{x}{2}+\frac{y}{2}+\frac{z}{2}+\frac{3}{2}$…(10分)
点评 本题考查不等式的证明,考查基本不等式的运用,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com