精英家教网 > 高中数学 > 题目详情
7.直线ax+by=1与圆x2+y2=$\frac{1}{4}$相交于不同的A,B两点(其中a,b是实数),且|AB|<$\frac{\sqrt{2}}{2}$,则a2+b2-2a的取值范围为(  )
A.(1,10+4$\sqrt{2}$)B.(1,6+3$\sqrt{2}$)C.(0,6+3$\sqrt{2}$)D.(0,8+4$\sqrt{2}$)

分析 由题意,圆心到直线的距离$\frac{1}{2}$>d>$\sqrt{\frac{1}{4}-\frac{1}{8}}$=$\frac{\sqrt{2}}{4}$,确定4<a2+b2<8,表示以原点为圆心,2,2$\sqrt{2}$为半径的圆环.
a2+b2-2a=(a-1)2+b2-1,(a-1)2+b2表示(a,b)与(1,0)的距离的平方,其范围为(1,(2$\sqrt{2}$+1)2),即可得出结论.

解答 解:由题意,圆心到直线的距离$\frac{1}{2}$>d>$\sqrt{\frac{1}{4}-\frac{1}{8}}$=$\frac{\sqrt{2}}{4}$,
∴$\frac{1}{2}$>$\frac{1}{\sqrt{{a}^{2}+{b}^{2}}}$>$\frac{\sqrt{2}}{4}$,
∴4<a2+b2<8,
表示以原点为圆心,2,2$\sqrt{2}$为半径的圆环.
a2+b2-2a=(a-1)2+b2-1,
(a-1)2+b2表示(a,b)与(1,0)的距离的平方,其范围为(1,(2$\sqrt{2}$+1)2),
∴a2+b2-2a的取值范围为(0,8+4$\sqrt{2}$),
故选:D.

点评 本题考查直线与圆的位置关系,考查了点到直线的距离公式,训练了利用配方法,解答此题的关键在于确定4<a2+b2<8,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=$\sqrt{{x}^{2}+1}$-ax.
(1)当a≥1时,证明函数f(x)在区间[0,+∞)上是单调减函数;
(2)当x∈[0,2]时,f(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=$\frac{3{x}^{2}}{\sqrt{1-x}}$-lg(3x-1)的定义域用区间表示为$(\frac{1}{3},1)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=x2在区间[x0,x0+△x]上的变化率为a,与在x=x0处瞬时变化率b的关系是(  )
A.a>bB.a=bC.a<bD.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知:关于x的不等式x2+ax+b<0的解集为(1,2).求:关于x的不等式bx2+ax+1>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数y=$\sqrt{|sinx+cosx|-1}$的定义域是(  )
A.[kπ,kπ+$\frac{π}{2}$](k∈Z)B.[2kπ,2kπ+$\frac{π}{2}$](k∈Z)C.[-$\frac{π}{2}$+kπ,kπ](k∈Z)D.[-$\frac{π}{2}$+2kπ,2kπ](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.将下列三角函数化为0°~45°内的角的三角函数.
(1)sin66°;
(2)cos74°;
(3)cos118°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知长方体ABCD-A1B1C1D1的对称中心在坐标原点为O,交于同一顶点的三个面分别平行于三个坐标平面,其中顶点A(-2,-3,-1),求其他7个顶点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知等比数列{an}的各项均为正数,公比q≠1,设P=$\frac{1}{2}$(${log_{\frac{1}{2}}}{a_5}+{log_{\frac{1}{2}}}{a_7}$),Q=${log_{\frac{1}{2}}}\frac{{{a_3}+{a_9}}}{2}$,则P与Q的大小关系是(  )
A.P≥QB.P<QC.P≤QD.P>Q

查看答案和解析>>

同步练习册答案