精英家教网 > 高中数学 > 题目详情
6.求下列函数的周期:
(1)y=tan2x,x≠$\frac{π}{4}$+$\frac{kπ}{2}$(k∈Z);
(2)y=5tan$\frac{x}{2}$,x≠(2k+1)π(k∈Z).

分析 直接利用三角函数的周期公式求解即可.

解答 解:(1)y=tan2x,x≠$\frac{π}{4}$+$\frac{kπ}{2}$(k∈Z);函数的周期为:T=$\frac{π}{2}$.
(2)y=5tan$\frac{x}{2}$,x≠(2k+1)π(k∈Z).函数的周期为:T=$\frac{π}{\frac{1}{2}}$═2π.

点评 本题考查正切函数的周期的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.根据正弦函数的图象.能使不等式$\sqrt{2}$+2sinx≤0(0∈[0,2π])成立的x的解集为[$\frac{5π}{4}$,$\frac{7π}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.点P(1,2)到直线2x-y+5=0的距离是$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求下列函数的单调区间:
(1)y=1-sinx,x∈R;    
(2)y=sin2x,x∈R;      
(3)y=sin$\frac{x}{2}$,x∈R.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知:如图的长方体AC′,求证:B′D′∥平面ABCD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,长方体ABCD-A1B1C1D1中,M是AD的中点,N是B1C1 的中点,求证:CM∥A1 N.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.点M为双曲线$\frac{{x}^{2}}{3}$-y2=1右支上任一点,点A(3,0)与点M连线段长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.下列说法中.所有正确的说法个数为( 1 )
①对任意a>0,函数f(x)=(lnx)2+lnx-a有零点
②函数y=$\frac{x+3}{x-1}$的冬像关于点(-1,1)对称
③函数f(x)=cos2x的图象中,相邻两个对称中心的距离为π
④若函数f(x)=cos2ax的最小正周期是π,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设集合M={x|1<x≤20}与非空集合N={x|2a-1≤x<3a-4},且N⊆(M∩N),求实数a的取值范围.

查看答案和解析>>

同步练习册答案