精英家教网 > 高中数学 > 题目详情
17.已知抛物线的顶点为原点,焦点在x轴上,抛物线上一点A(-3,m)到焦点的距离为7,求抛物线的标准方程.

分析 先确定抛物线的焦点一定在x轴负半轴上,故可设出抛物线的标准方程,再由抛物线的定义,点M到焦点的距离等于到准线的距离,即可求得抛物线方程.

解答 解:∵抛物线顶点在原点,焦点在x轴上,其上一点A(-3,m),
∴设抛物线方程为y2=-2px(p>0)
∵抛物线上一点A(-3,m)到焦点的距离为7,
∴3+$\frac{p}{2}$=7,
∴p=8,
∴抛物线方程为y2=-16x.

点评 本题考查抛物线的定义,抛物线的标准方程及其求法,利用定义将到焦点的距离转化为到准线的距离是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知正项数列{an},{bn}满足an+1=4bn,且bn+1=an+bn,xn=$\frac{{a}_{n}}{{b}_{n}}$,则当x2013+x2014最小时,x2015=$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数y=$\sqrt{cosx-\frac{\sqrt{3}}{2}}$的定义域为(  )
A.[kπ-$\frac{π}{6}$,kπ+$\frac{π}{6}$],k∈ZB.[-$\frac{π}{6}$,$\frac{π}{6}$]
C.[2kπ-$\frac{π}{6}$,2kπ+$\frac{π}{6}$],k∈ZD.R

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.判断下列函数的奇偶性.
(1)f(x)=$\frac{sinx-tanx}{x}$;
(2)f(x)=lg(1-sinx)-lg(1+sinx);
(3)f(x)=$\frac{co{s}^{2}x}{1-sinx}$;
(4)f(x)=$\sqrt{1-cosx}$+$\sqrt{cosx-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)与直线x=±$\sqrt{2}$a分别交于A,B,C,D四点,且四边形ABCD为正方形,则此双曲线的离心率为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知球的半径为R,求其内接正方体的棱长$\frac{2}{3}$$\sqrt{3}$R.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=x2-2x-3的值域是(  )
A.[-4,+∞)B.($\frac{5}{4}$,+∞)C.(-∞,-4]D.(-∞,$\frac{5}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知等差数列{an}的前n项和是Sn,若S30=13S10,S10+S30=140,则S20的值是(  )
A.60B.70C.$\frac{170}{3}$D.$\frac{160}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.圆x2+y2-4x+2=0与直线l相切于点A(3,1),则直线l的方程为x+y-4=0.

查看答案和解析>>

同步练习册答案