精英家教网 > 高中数学 > 题目详情

已知函数.
(1)若函数在定义域内为增函数,求实数的取值范围;
(2)设,若函数存在两个零点,且实数满足,问:函数处的切线能否平行于轴?若能,求出该切线方程;若不能,请说明理由.

(1);(2)处的切线不能平行于轴.

解析试题分析:(1)函数在定义域内为增函数,则其导数恒大于等于0.求导得:
.由得:.要恒成立,只需即可.接下来利用重要不等式可求出的最小值.
由题意,知恒成立,即
(2)本题属探索性问题.对探索性问题,常用的方法是假设成立,然后利用题设试着去求相关的量.若能求出来,则成立;若无解,则不成立.
在本题中,总的方向如下:首先假设的切线平行于轴,则的极值点,故有.又函数存在两个零点,所以,再加上,这样有4个方程(4个未知数).接下来就试着求.若能求出,则切线能平行于轴(同时也就求出了该切线方程);若不能求出,则切线不能平行于轴.
试题解析:(1)
由题意,知恒成立,即
,当且仅当时等号成立.
,所以. 
(2)将求导得:.
存在两个零点,所以.
的切线平行于轴,则.
结合题意,有
①—②得
所以由④得
所以          ……………………………………⑤
,⑤式变为


所以函数上单调递增,
因此,,即
也就是,,此式与⑤矛盾.所以处的切线不能平行于轴.
考点:1、函数的单调性;2、函数的零点;3、函数的导数及其应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数 (为实常数) .
(1)当时,求函数上的最大值及相应的值;
(2)当时,讨论方程根的个数.
(3)若,且对任意的,都有,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ax4lnx+bx4﹣c(x>0)在x=1处取得极值﹣3﹣c,其中a,b,c为常数.
(1)试确定a,b的值;
(2)讨论函数f(x)的单调区间;
(3)若对任意x>0,不等式f(x)≥﹣2c2恒成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数).
(1)求的单调区间;
⑵如果是曲线上的任意一点,若以为切点的切线的斜率恒成立,求实数的最小值;
⑶讨论关于的方程的实根情况.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若函数上是增函数,求实数的取值范围;
(2)若函数上的最小值为3,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,其对应的图像为曲线C;若曲线C过,且在点处的切斜线率
(1)求函数的解析式
(2)证明不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)若是函数的极值点,是函数的两个不同零点,且,求
(2)若对任意,都存在为自然对数的底数),使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若1是函数的一个零点,求函数的解析表达式;
(2)试讨论函数的零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义在上的函数,其中为常数.
(1)当是函数的一个极值点,求的值;
(2)若函数在区间上是增函数,求实数的取值范围;
(3)当时,若,在处取得最大值,求实数的取值范围.

查看答案和解析>>

同步练习册答案