精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面ABCD为梯形,AB//CDAB=AD=2CD=2,△ADP为等边三角形.

(1)PB长为多少时,平面平面ABCD?并说明理由;

(2)若二面角大小为150°,求直线AB与平面PBC所成角的正弦值.

【答案】(1)当时,平面平面,详见解析(2)

【解析】

(1)根据平面和平面垂直可得线面垂直,从而可得,利用直角三角形知识可得的长;

(2)构建空间直角坐标系,利用法向量求解直线AB与平面PBC所成角的正弦值.

解:(1)当时,平面平面

证明如下:在中,因为,所以

,所以平面

平面,所以平面平面

2)分别取线段的中点,连接,因为为等边三角形,的中点,所以的中点,所以,

,所以,故为二面角的平面角,所以

如图,分别以的方向以及垂直于平面向上的方向作为轴的正方向,建立空间直角坐标系

因为,所以.

可得

为平面的一个法向量,则有

,令

可得

与平面所成角为,则有

所以直线与平面所成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,若直线是函数的图象的切线,求的最小值;

(2)设函数,若上存在极值,求的取值范围,并判断极值的正负.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】手机支付也称为移动支付,是指允许用户使用其移动终端(通常是手机)对所消费的商品或服务进行账务支付的一种服务方式.随着信息技术的发展,手机支付越来越成为人们喜欢的支付方式.某机构对某地区年龄在1575岁的人群是否使用手机支付的情况进行了调查,随机抽取了100人,其年龄频率分布表和使用手机支付的人数如下所示:(年龄单位:岁)

年龄段

[1525

[2535

[3545

[4555

[5565

[6575]

频率

0.1

0.32

0.28

0.22

0.05

0.03

使用人数

8

28

24

12

2

1

1)若以45岁为分界点,根据以上统计数据填写下面的2×2列联表,并判断能否在犯错误的概率不超过0.001的前提下认为使用手机支付与年龄有关?

年龄低于45

年龄不低于45

使用手机支付

不使用手机支付

2)若从年龄在[5565),[6575]的样本中各随机选取2人进行座谈,记选中的4人中使用手机支付的人数为X,求随机变量X的分布列和数学期望.

参考数据:

PK2k0

0.025

0.010

0.005

0.001

k0

3.841

6.635

7.879

10.828

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正三棱柱ABC-A1B1C1中,AB=AA1=2,点PQ分别为A1B1BC的中点.

(1)求异面直线BPAC1所成角的余弦值;

(2)求直线CC1与平面AQC1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代数学经典名著,其中有这样一个问题:今有圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?其意为:今有-圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该木材,锯口深一寸,锯道长-尺.问这块圆柱形木材的直径是多少?现有长为1丈的圆柱形木材部分镶嵌在墙体中,截面图如图所示(阴影部分为镶嵌在墙体内的部分).已知弦尺,弓形高寸,估算该木材镶嵌在墙体中的体积约为__________立方寸.(结果保留整数)

注:l丈=10尺=100寸,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数是偶函数,求实数的值;

2)若函数,关于的方程有且只有一个实数根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年是中国成立70周年,也是全面建成小康社会的关键之年.为了迎祖国70周年生日,全民齐心奋力建设小康社会,某校特举办喜迎国庆,共建小康知识竞赛活动.下面的茎叶图是参赛两组选手答题得分情况,则下列说法正确的是(

A.甲组选手得分的平均数小于乙组选手的平均数B.甲组选手得分的中位数大于乙组选手的中位数

C.甲组选手得分的中位数等于乙组选手的中位数D.甲组选手得分的方差大于乙组选手的的方差

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.(其中实数).

1)分别求出pq中关于x的不等式的解集MN

2)若pq的必要不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2017·江苏高考)如图,在三棱锥ABCD中,ABADBCBD,平面ABD⊥平面BCD,点EF(EAD不重合)分别在棱ADBD上,且EFAD.

求证:(1)EF∥平面ABC

(2)ADAC.

查看答案和解析>>

同步练习册答案