精英家教网 > 高中数学 > 题目详情
数列{an}满足:a1=3,an+1=an2-2an+2(n∈N*)
(1)求数列{an}的通项公式;
(2)求证:数列{an}中的任两项互质.
(3)记bn=
1
an
+
1
an-2
,Sn为数列{bn}的前n项和,求S2009的整数部分.
分析:(1)由an+1=an2-2an+2可得,an-1=(an-1-1)2,利用迭代的方法可求通项公式
(2)由an-2=an-1(an-1-2),利用迭代法可得,an=an-1an-2…a2a1+2,结合(1)中的通项公式可知an为奇数,可证明
(3)由an+1-2=an(an-2),可得
2
an+1-2
=
1
an-2
-
1
an
,结合已知,可得bn=
2
an-2
-
2
an+1-2
,利用叠加法可求S2009,从而可求
解答:解:(1)由题意可得,an-1=(an-1-1)2=(an-2-1)22=…=(a2-1)2n-2=(a1-1)2n-1=22n-1
n=1,a1-1=221-1也成立,所以an=22n-1+1(5分)
证明:(2)因为an-2=an-1(an-1-2)=an-1an-2(an-2-2)=…=an-1an-2…a2a1
所以an=an-1an-2…a2a1+2,(9分);
因为an为奇数,所以对任意的n>1,an与前面项a1,a2,…,an-1均互质.(12分).
解:(3)因为an+1-2=an(an-2)
所以,
1
an+1-2
=
1
an(an-2)
=
1
2
(
1
an-2
-
1
an
)

所以
2
an+1-2
=
1
an-2
-
1
an
,又因为bn=
1
an
+
1
an-2

所以bn=
2
an-2
-
2
an+1-2
16分);
所以S2009=b1+b2+…+b2009
=
2
a1-2
-
2
a2-2
+
2
a2-2
-
2
a3-2
+…+
2
a2009-2
-
2
a2010-2

S2009=
2
a1-2
-
2
a2010-2
=2-
2
222010-1

0<
2
222010-1
<1

1<2-
2
222010
<2

所以S2009的整数部分为1(19分).
点评:本题主要考查了数列中迭代法求解数列的通项公式,叠加法求解数列的和,解题中要求考生具备一定的逻辑推理与运算的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}满足a1=a,an+1=can+1-c(n∈N*),其中a,c为实数,且c≠0.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设a=
1
2
,c=
1
2
bn=n(1-an)(n∈N*)
,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足a1=a,an+1=
an+3
2
,n=1,2,3,….
(Ⅰ)若an+1=an,求a的值;
(Ⅱ)当a=
1
2
时,证明:an
3
2

(Ⅲ)设数列{an-1}的前n项之积为Tn.若对任意正整数n,总有(an+1)Tn≤6成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•天津模拟)设数列{an}满足a1=a,an+1=can+1-c(n∈N*),其中a,c为实数,且c≠0.
(1)求证:a≠1时数列{an-1}是等比数列,并求an
(2)设a=
1
2
c=
1
2
bn=n(1-an)(n∈N*)
,求数列{bn}的前n项和Sn
(3)设a=
3
4
,c=-
1
4
cn=
3+an
2-an
(n∈N*),记dn=c2n-c2n-1(n∈N*)
,设数列{dn}的前n项和为Tn,求证:对任意正整数n都有Tn
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•大连二模)已知a为实数,数列{an}满足a1=a,当n≥2时,an=
an-1-4 (an-1>4)
5-an-1 (an-1≤4)

(I)当a=200时,填写下列表格;
N 2 3 51 200
an
(II)当a=200时,求数列{an}的前200项的和S200
(III)令b n=
an
(-2)n
,Tn=b1+b2…+bn求证:当1<a<
5
3
时,T n
5-3a
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知常数a、b都是正整数,函数f(x)=
x
bx+1
(x>0),数列{an}满足a1=a,
1
an+1
=f(
1
an
)
(n∈N*
(1)求数列{an}的通项公式;
(2)若a=8b,且等比数列{bn}同时满足:①b1=a1,b2=a5;②数列{bn}的每一项都是数列{an}中的某一项.试判断数列{bn}是有穷数列或是无穷数列,并简要说明理由;
(3)对问题(2)继续探究,若b2=am(m>1,m是常数),当m取何正整数时,数列{bn}是有穷数列;当m取何正整数时,数列{bn}是无穷数列,并说明理由.

查看答案和解析>>

同步练习册答案