ÒÑÖª¶¨ÒåÔÚRÉϵĵ¥µ÷º¯Êýf£¨x£©£¬´æÔÚʵÊýx0£¬Ê¹µÃ¶ÔÓÚÈÎÒâʵÊýx1£¬x2£¬×ÜÓÐf£¨x0x1+x0x2£©=f£¨x0£©+f£¨x1£©+f£¨x2£©ºã³ÉÁ¢£®
£¨1£©Çóx0µÄÖµ£»
£¨2£©Èôf£¨x0£©=1£¬ÇÒ¶ÔÓÚÈÎÒâÕýÕûÊýn£¬ÓÐÊýѧ¹«Ê½£¬¼ÇSn=a1a2+a2a3+¡­+anan+1£¬Tn=b1b2+b2b3+¡­+bnbn+1£¬±È½ÏÊýѧ¹«Ê½ÓëTnµÄ´óС¹Øϵ£¬²¢¸ø³öÖ¤Ã÷£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬Èô²»µÈʽÊýѧ¹«Ê½¶ÔÈÎÒâ
²»Ð¡ÓÚ2µÄÕýÕûÊýn¶¼³ÉÁ¢£¬ÇóxµÄÈ¡Öµ·¶Î§£®

½â£º£¨1£©Áîx1=x2=0?f£¨x0£©=-f£¨0£©£®ÓÖÁîx1=1£¬x2=0£¬f£¨1£©=-f£¨0£©£®
¡àf£¨x0£©=f£¨1£©£¬Óɺ¯Êýf£¨x£©µ¥µ÷ÐÔÖª£¬x0=1£®
£¨2£©ÓÉ£¨1£©Öª£¬f£¨x1+x2£©=f£¨x1£©+f£¨x2£©+f£¨1£©=f£¨x1£©+f£¨x2£©+1£¬
ÓÉx1£¬x2µÄÈÎÒâÐÔ£¬Áîx1=n£¬x2=1£¬f£¨n+1£©=f£¨n£©+f£¨1£©+1=f£¨n£©+2£¬
¡àf£¨n£©=2n-1£®£¨n¡ÊN*£©£®
¡à£®
Ó֡ߣ®
Ó֡ߣ¬
¡à£®
¡à£®
ÓÉÊýÁÐÇóºÍ·½·¨Öª£º£¬£®¡à£®
¡ß4n=£¨3+1£©n=Cnn3n+Cnn-13n-1+¡­+Cn13+Cn0¡Ý3n+1£¾2n+1£¬¡à£®
£¨3£©ÁîF£¨n£©=an+1+an+2+¡­+a2n?F£¨n+1£©-F£¨n£©=a2n+1+a2n+2-an+1=£¨Í¨·ÖÒ×Ö¤£©¡àµ±n¡Ý2ʱ£¬£®
¡à£®
½â´Ë²»µÈʽ£¬ËùÒÔxµÄÈ¡Öµ·¶Î§Îª£®
·ÖÎö£º£¨1£©·Ö±ðÁîx1=x2=0£¬x1=1£¬x2=0£¬f£¨x0£©=f£¨1£©£¬ÓÖÒòΪf£¨x£©Îªµ¥µ÷º¯Êý£¬´Ó¶ø¿ÉÇóx0µÄÖµ£»
£¨2£©ÓÉ£¨1£©µÃf£¨x1+x2£©=f£¨x1£©+f£¨x2£©+1£¬£¬Áîx1=n£¬x2=1£¬f£¨n+1£©=f£¨n£©+f£¨1£©+1=f£¨n£©+2£¬f£¨n£©=2n-1£®¹Ê¿ÉÇóan½ø¶ø¿ÉÓÐ £¬´Ó¶ø¿ÉÇóͨÏ¹Ê¿ÉÖ¤£»
£¨3£©¹¹Ô캯ÊýF£¨n£©=an+1+an+2+¡­+a2n£¬Ö¤Ã÷n¡Ý2ʱ£¬Îªµ¥µ÷¼õº¯Êý£¬´Ó¶ø¿ÉÇóxµÄÈ¡Öµ·¶Î§£®
µãÆÀ£º±¾ÌâÒÔж¨ÒåΪÔØÌ壬¿¼²é³éÏóº¯Êý£¬¿¼²é¸³Öµ·¨£¬Í¬Ê±¿¼²é¹¹Ô캯Êý£¬ÀûÓú¯ÊýµÄµ¥µ÷ÐÔ½â¾öºã³ÉÁ¢ÎÊÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

15¡¢ÒÑÖª¶¨ÒåÔÚRÉϵĵ¥µ÷º¯Êýf£¨x£©Âú×㣺´æÔÚʵÊýx0£¬Ê¹µÃ¶ÔÓÚÈÎÒâʵÊýx1£¬x2£¬×ÜÓÐf£¨x0x1+x0x2£©=f£¨x0£©+f£¨x1£©+f£¨x2£©ºã³ÉÁ¢£¬Ôò£¨i£©f£¨1£©+f£¨0£©=
0
£¨ii£©x0µÄֵΪ
1
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¶¨ÒåÔÚRÉϵĵ¥µ÷º¯Êýf£¨x£©£¬´æÔÚʵÊýx0£¬Ê¹µÃ¶ÔÓÚÈÎÒâʵÊýx1£¬x2×ÜÓÐf£¨x0x1+x0x2£©=f£¨x0£©+f£¨x1£©+f£¨x2£©ºã³ÉÁ¢
£¨1£©Çóx0µÄÖµ£»
£¨2£©Èôf£¨x0£©=1£¬ÇÒ¶ÔÈÎÒâÕýÕûÊýn£¬ÓÐan=
1
f(n)
£¬bn=f(
1
2n
)+1
£¬¼ÇSn=a1a2+a2a3+¡­+anan+1£¬Tn=b1b2+b2b3+¡­+bnbn+1£¬ÇóSnºÍTn£»
£¨3£©Èô²»µÈʽan+1+an+2+¡­+a2n£¾
4
35
[log
1
2
(x+1)-log
1
2
(9x2-1)+1]
¶ÔÈÎÒⲻСÓÚ2µÄÕýÕûÊýn¶¼³ÉÁ¢£¬ÇóxµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¶¨ÒåÔÚRÉϵĵ¥µ÷º¯Êýy=f£¨x£©£¬µ±x£¼0ʱ£¬f£¨x£©£¾1£¬ÇÒ¶ÔÈÎÒâµÄʵÊýx£¬y¡ÊR£¬ÓÐf£¨x+y£©=f£¨x£©f£¨y£©£¬
£¨1£©Çóf£¨0£©£¬²¢Ð´³öÊʺÏÌõ¼þµÄº¯Êýf£¨x£©µÄÒ»¸ö½âÎöʽ£»
£¨2£©ÊýÁÐ{an}Âú×ãa1=f(0)ÇÒf(an+1)=
1
f(-2-an)
(n¡ÊN+)
£¬
¢ÙÇóͨÏʽanµÄ±í´ïʽ£»
¢ÚÁîbn=(
1
2
)an£¬Sn=b1+b2+¡­+bn£¬Tn=
1
a1a2
+
1
a2a3
+¡­+
1
anan+1
£¬ÊԱȽÏSnÓë
4
3
Tn
µÄ´óС£¬²¢¼ÓÒÔÖ¤Ã÷£»
¢Ûµ±a£¾1ʱ£¬²»µÈʽ
1
an+1
+
1
an+2
+¡­+
1
a2n
£¾
12
35
(log a+1x-log ax+1)
¶ÔÓÚ²»Ð¡ÓÚ2µÄÕýÕûÊýnºã³ÉÁ¢£¬ÇóxµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2009•»Æ¸ÔÄ£Ä⣩ÒÑÖª¶¨ÒåÔÚRÉϵĵ¥µ÷º¯Êýf£¨x£©£¬´æÔÚʵÊýx0£¬Ê¹µÃ¶ÔÓÚÈÎÒâʵÊýx1£¬x2£¬×ÜÓÐf£¨x0x1+x0x2£©=f£¨x0£©+f£¨x1£©+f£¨x2£©ºã³ÉÁ¢£®
£¨1£©Çóx0µÄÖµ£»
£¨2£©Èôf£¨x0£©=1£¬ÇÒ¶ÔÓÚÈÎÒâÕýÕûÊýn£¬ÓÐan=
1
f(n)
£¬bn=f(
1
2n
)+1
£¬¼ÇSn=a1a2+a2a3+¡­+anan+1£¬Tn=b1b2+b2b3+¡­+bnbn+1£¬±È½Ï
4
3
Sn
ÓëTnµÄ´óС¹Øϵ£¬²¢¸ø³öÖ¤Ã÷£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬Èô²»µÈʽan+1+an+2+¡­+a2n£¾
4
35
[log
1
2
(x+1)-log
1
2
(9x2-1)+1]
¶ÔÈÎÒⲻСÓÚ2µÄÕýÕûÊýn¶¼³ÉÁ¢£¬ÇóxµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•¹ãÖÝÈýÄ££©ÒÑÖª¶¨ÒåÔÚRÉϵĵ¥µ÷º¯Êýf£¨x£©£¬´æÔÚʵÊýx0ʹµÃ¶ÔÈÎÒâʵÊýx1£¬x2£¬×ÜÓÐf£¨x0x1+x0x2£©=f£¨x0£©+f£¨x1£©+f£¨x2£©ºã³ÉÁ¢£®
£¨1£©Çóx0µÄÖµ£»
£¨2£©Èôf£¨x0£©=1£¬ÇÒ¶ÔÈÎÒâµÄÕýÕûÊýn£®ÓÐan=
1
f(n)
£¬bn=f(
1
2n
)+1
£¬¼ÇSn=a1a2+a2a3+¡­+anan+1£¬Tn=b1b2+b2b3+¡­+bnbn+1£¬±È½Ï
4
3
Sn
ÓëTnµÄ´óС¹Øϵ£¬²¢¸ø³öÖ¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸