精英家教网 > 高中数学 > 题目详情

在通项为:“①(-1)n×n”的这个数列中,当n®¥时,极限等于1的数列个数是( )

A2                      B3              C4              D5

 

答案:A
提示:

数列的极限

 


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,如果对任意的n∈N*,都有
an+2
an+1
-
an+1
an
(λ为常数),则称数列{an}为比等差数列,λ称为比公差.则下列命题中真命题的序号是
①③
①③

①若数列{Fn}满足F1=1,F2=1,Fn=Fn-1+Fn-2(n≥3),则该数列不是比等差数列;
②若数列{an}满足an=(n-1)•2n-1,则数列{an}是比等差数列,且比公差λ=2;
③“等差数列是常数列”是“等差数列成为比等差数列”的充分必要条件;
④数列{an}满足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N),则此数列的通项为an=
n•3n
3n-1
,且{an}不是比等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

设n为正整数,已知P1(a1,b1),P2(a2,b2),…,pn(an,bn),…都在函数y=(
12
)x
的图象上.其中数列{an}是首项、公差都为1的等差数列,数列{cn}的通项为cn=anbn
(1)证明:数列{bn}是等比数列,并求出公比;
(2)求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合W是满足下列两个条件的无穷数列{an}的集合:①
an+an+2
2
an+1
②an≤M,其中n∈N*,M是与n无关的常数
(1)若{an}是等差数列,Sn是其前n项的和,a3=4,S3=18,试探究{Sn}与集合W之间的关系;
(2)设数列{bn}的通项为bn=5n-2n,且{bn}∈W,M的最小值为m,求m的值;
(3)在(2)的条件下,设Cn=
1
5
[bn+(m-5)n]+
2
,求证:数列{Cn}中任意不同的三项都不能成为等比数列.

查看答案和解析>>

科目:高中数学 来源:数学教研室 题型:013

在通项为:“①(-1)n×n”的这个数列中,当n®¥时,极限等于1的数列个数是( )

A2                      B3              C4              D5

 

查看答案和解析>>

同步练习册答案