精英家教网 > 高中数学 > 题目详情
已知圆C:x2+y2+2x-4y+3=0.
(1)若圆C的切线在x轴和y轴上截距相等,求切线的方程;
(2)若为圆C上任意一点,求的最大值与最小值;
(3)从圆C外一点P(x,y)向圆引切线PM,M为切点,O为坐标原点,且有|PM|=|PO|,求当|PM|最小时的点P的坐标。
(1);或,或;(2)最大值为-1,最小值为-7.;(3)当y=即P()时,|PM|最小.

试题分析:(1)当截距为0时,设出切线方程为y=kx,同理列出关于k的方程,求出方程的解即可得到k的值,得到切线的方程;当截距不为零时,根据圆C的切线在x轴和y轴的截距相等,设出切线方程x+y=b,然后利用点到直线的距离公式求出圆心到切线的距离d,让d等于圆的半径r,列出关于b的方程,求出方程的解即可得到b的值,得到切线的方程;(2)设,则表示直线MA的斜率;其中A(1,-2)是定点;因为在圆C上,所以圆C与直线MA有公共点,而直线MA方程为:y+2=(x-1),则有:C点到直线MA的距离不大于圆C的半径,即:,解得:,即可求出的最大值为和最小值;(3)根据圆切线垂直于过切点的半径,得到三角形CPM为直角三角形,根据勾股定理表示出点P的轨迹方程,由轨迹方程得到动点P的轨迹为一条直线,所以|PM|的最小值就是|PO|的最小值,求出原点到P轨迹方程的距离即为|PO|的最小值,然后利用两点间的距离公式表示出P到O的距离,把P代入动点的轨迹方程,两者联立即可此时P的坐标.
解:圆C的方程为:(x+1)2+(y-2)2=2
(1)圆C的切线在x轴和y轴上截距相等时,切线过原点或切线的斜率为
当切线过原点时,设切线方程为:y=kx,相切则:,得
当切线的斜率为时,设切线方程为:y=-x+b,由相切得:
得b=1或b=5;故所求切线方程为:;或,或
(2)设,则表示直线MA的斜率;其中A(1,-2)是定点;
因为在圆C上,所以圆C与直线MA有公共点,
而直线MA方程为:y+2=(x-1),则有:C点到直线MA的距离不大于圆C的半径
即:,解得:,即的最大值为-1,最小值为-7.
(3)由圆的切线长公式得|PM|2=|PC|2-R2=(x+1)2+(y-2)2-2;
由|PM|=|PO|得:(x+1)2+(y-2)2-2=x2+y2;即2x-4y+3=0, 即x=2y-
此时|PM|=|PO|=
所以当y=即P()时,|PM|最小.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知直线l:kx-y+1+2k=0(k∈R)
(1)证明:直线l过定点;
(2)若直线l不经过第四象限,求k的取值范围;
(3)若直线l交x轴负半轴于点A,交y轴正半轴于点B,O为坐标原点,设△AOB的面积为S,求S的最小值及此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点A(3,3),B(5,2)到直线l的距离相等,且直线l经过两直线l1:3x-y-1=0和l2:x+y-3=0的交点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

[2014·厦门模拟]已知直线3x+4y-3=0与直线6x+my+14=0平行,则它们之间的距离是(  )
A.1B.2C.D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

把一颗骰子投掷两次,观察掷出的点数,并记第一次掷出的点数为,第二次掷出的点数为.试就方程组(※)解答下列问题:
(1)求方程组没有解的概率;
(2)求以方程组(※)的解为坐标的点落在第四象限的概率..

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

对于任给的实数,直线都通过一定点,则该定点坐标为          .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆上的点到椭圆右焦点的最大距离为,离心率,直线过点与椭圆交于两点.
(1)求椭圆的方程;
(2)上是否存在点,使得当转到某一位置时,有成立?若存在,求出所有点的坐标与的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若由不等式组确定的平面区域的边界为三角形,且它的外接圆的圆心在x轴上,则实数m的值为(  )
A.B.-C.D.-

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

经过圆的圆心,且与直线垂直的直线方程是           .

查看答案和解析>>

同步练习册答案