【题目】某公司推出一新款手机,因其功能强大,外观新潮,一上市便受到消费者争相抢购,销量呈上升趋势.散点图是该款手机上市后前6周的销售数据.
(Ⅰ)根据散点图,用最小二乘法求关于的线性回归方程,并预测该款手机第8周的销量;
(Ⅱ)为了分析市场趋势,该公司市场部从前6周的销售数据中随机抽取2周的数据,求抽到的这2周的销量均在20万台以下的概率.
参考公式:回归直线方程,其中:,.
【答案】(Ⅰ),25万台(Ⅱ)
【解析】
(Ⅰ)根据散点图中的数据求出,再结合所给公式求出,即可得到所求回归方程,进而可进行预测;(Ⅱ)列举出所有的基本事件和事件“抽到的这2周的销量均在20万台以下”包含的基本事件,然后根据古典概型概率求解即可.
(Ⅰ)由题意得
,
,
,
,
,.
所以,
所以.
所以所求的线性回归直线方程为.
当时,,所以预计该款手机第8周的销量为25万台.
(Ⅱ)由题意可知,前6周中有4周销量在20万台以下,分别记为,,,,有2周的销量不在20万台以下,分别记为,.
从中随机抽取2周的所有基本事件为:,,,,,,,,,,,,,,,共15个.
设事件为“抽到的这2周的销量均在20万台以下”,则事件包含的基本事件有:,,,,,,共6个.
所以,
即抽到的这2周的销量均在20万台以下的概率为.
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,M是椭圆C的上顶点,,F2是椭圆C的焦点,的周长是6.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)过动点P(1,t)作直线交椭圆C于A,B两点,且|PA|=|PB|,过P作直线l,使l与直线AB垂直,证明:直线l恒过定点,并求此定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知圆经过,,三点,是线段上的动点,,是过点且互相垂直的两条直线,其中交轴于点,交圆于、两点.
(1)若,求直线的方程;
(2)若是使恒成立的最小正整数.
①求的值;
②求三角形的面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:的左焦点为F(﹣1,0),离心率为,过点F的直线l与椭圆C交于A、B两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设过点F不与坐标轴垂直的直线交椭圆C于A、B两点,线段AB的垂直平分线与x轴交于点G,求点G横坐标的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:1(a>b>0)经过点(,1),F(0,1)是C的一个焦点,过F点的动直线l交椭圆于A,B两点.
(1)求椭圆C的方程
(2)是否存在定点M(异于点F),对任意的动直线l都有kMA+kMB=0,若存在求出点M的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,其短轴的两个端点与长轴的一个端点构成的三角形的面积为.
(1)求椭圆的标准方程;
(2)直线与圆相切,并与椭圆交于不同的两点和,若为坐标原点),求线段长度的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】汕头某家电企业要将刚刚生产的100台变频空调送往市内某商场,现有4辆甲型货车和8辆乙型货车可供调配,每辆甲型货车的运输费用是400元,可装空调20台,每辆乙型货车的运输费用是300元,可装空调10台,若每辆车至多运一次,则企业所花的最少运费为( )
A. 2000元B. 2200元C. 2400元D. 2800元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的是( )
A.命题“若.则a,b中至少有一个不小于1”的逆命题是一个真命题
B.命题“负数的平方是正数”是特称命题
C.命题“设a,,若,则或”是一个真命题
D.常数数列既是等差数列也是等比数列
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com