精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线经过点.

1)求抛物线的方程及其准线方程;

2)设为原点,过抛物线的焦点作斜率不为0的直线交抛物线于两点,直线分别交直线于点和点.求证:以为直径的圆经过轴上的两个定点.

【答案】1)抛物线的方程为,准线方程为 2)证明见解析

【解析】

1)将点代入抛物线即可求出答案.

2)根据题意设出直线,联立直线与抛物线,即可得出.即可求出点,要证以为直径的圆经过轴上的两个定点.则只需证明在轴上存在两点使.

解:()由抛物线经过点,得.

所以抛物线的方程为,其准线方程为.

)抛物线的焦点为,设直线的方程为.

,得.

,则.

直线的方程为,令,得点的横坐标为.

同理可得点的横坐标.

设点,则.

.

,即,得.

综上,以为直径的圆经过轴上的定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆长轴的两个端点分别为 离心率.

1)求椭圆的标准方程;

2)作一条垂直于轴的直线,使之与椭圆在第一象限相交于点,在第四象限相交于点,若直线与直线相交于点,且直线的斜率大于,求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列与正项数列的前项和分别为,且对任意恒成立.

1)若,求数列的通项公式;

2)在(1)的条件下,若,求

3)若对任意,恒有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将4名大学生随机安排到A,B,C,D四个公司实习.

(1)求4名大学生恰好在四个不同公司的概率;

(2)随机变量X表示分到B公司的学生的人数,求X的分布列和数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前n项和为,且.

1)求数列的通项公式;

2)设数列的前n项和为,求

3)判断数列中是否存在三项成等差数列,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足:a1=1,记.

1)求b1b2的值;

2)证明:数列{bn}是等比数列;

3)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果不是等差数列,但若,使得,那么称为“局部等差”数列.已知数列的项数为4,记事件:集合,事件为“局部等差”数列,则条件概率( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中,角的顶点与坐标原点重合,始边与轴非负半轴重合,终边经过点,且.

(Ⅰ)若点的坐标为,求的值;

(Ⅱ)若点为线性约束条件所围成的平面区域上的一个动点,试确定角的取值范围,并求函数的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两地相距,汽车从甲地匀速行驶到乙地,速度不超过.已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度(单位:)的平方成正比,且比例系数为,固定部分为.

1)把全程运输成本(元)表示为速度的函数,并求出当时,汽车应以多大速度行驶,才能使得全程运输成本最小;

2)随着汽车的折旧,运输成本会发生一些变化,那么当元,此时汽车的速度应调整为多大,才会使得运输成本最小.

查看答案和解析>>

同步练习册答案