精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程选讲

在平面直角坐标系中,以原点为极点,以轴非负半轴为极轴建立极坐标系, 已知曲线的极坐标方程为,直线的极坐标方程为

(Ⅰ)写出曲线和直线的直角坐标方程;

(Ⅱ)设直线过点与曲线交于不同两点的中点为的交点为,求

【答案】(Ⅰ)C: ;直线的直角坐标方程 (Ⅱ)8

【解析】

(Ⅰ)由极坐标方程与直角坐标方程的互化公式可直接得出结果;

(Ⅱ)先写出直线的参数方程,代入曲线的普通方程,得到,再由直线的参数方程代入,得到,进而可得出结果.

(Ⅰ)曲线的直角坐标方程为:

的直角坐标方程为:

(Ⅱ)直线的参数方程为参数),

将其代入曲线的普通方程并整理得

两点的参数分别为,则

因为的中点,故点的参数为

点的参数分别为,把代入整理得

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如果一个三位数的十位上的数字比个位和百位上的数字都大,则称这个三位数为“凸数”(如132),现从集合中任取3个互不相同的数字,排成一个三位数,则这个三位数是“凸数”的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,以原点为圆心,为半径的定圆,与过原点且斜率为的动直线交于两点,在轴正半轴上有一个定点三点构成三角形,求:

1的面积的表达式,并求出的取值范围;

2的外接圆的面积的表达式,并求出的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正整数数列的前项和为,前项积,若,则称数列为“数列”.

(1)判断下列数列是否是数列,并说明理由;①2248;②8244056

(2)若数列数列,且.

(3)是否存在等差数列是数列?请阐述理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论的单调性;

(2)若的两个极值点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面四边形中,中点,,将沿对角线折起至,使平面平面,则四面体中,下列结论不正确的是( )

A. 平面

B. 异面直线所成的角为

C. 异面直线所成的角为

D. 直线与平面所成的角为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,过其焦点作斜率为1的直线交抛物线两点,且线段的中点的纵坐标为4.

(1)求抛物线的标准方程;

(2)若不过原点且斜率存在的直线与抛物线相交于两点,且.求证:直线过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知椭圆经过点.设椭圆的左顶点为,右焦点为,右准线与轴交于点,且为线段的中点.

(1)求椭圆的标准方程;

(2)若过点的直线与椭圆相交于另一点轴上方),直线与椭圆相交于另一点,且直线垂直,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线的焦点为是抛物线上的两个动点,线段的中点为,过作抛物线准线的垂线,垂足为,若,则的最大值为______.

查看答案和解析>>

同步练习册答案