【题目】选修4-4:坐标系与参数方程选讲
在平面直角坐标系中,以原点为极点,以轴非负半轴为极轴建立极坐标系, 已知曲线的极坐标方程为,直线的极坐标方程为.
(Ⅰ)写出曲线和直线的直角坐标方程;
(Ⅱ)设直线过点与曲线交于不同两点,的中点为,与的交点为,求.
科目:高中数学 来源: 题型:
【题目】如果一个三位数的十位上的数字比个位和百位上的数字都大,则称这个三位数为“凸数”(如132),现从集合中任取3个互不相同的数字,排成一个三位数,则这个三位数是“凸数”的概率为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面直角坐标系中,以原点为圆心,为半径的定圆,与过原点且斜率为的动直线交于、两点,在轴正半轴上有一个定点,、、三点构成三角形,求:
(1)△的面积的表达式,并求出的取值范围;
(2)△的外接圆的面积的表达式,并求出的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】正整数数列的前项和为,前项积,若,则称数列为“数列”.
(1)判断下列数列是否是数列,并说明理由;①2,2,4,8;②8,24,40,56
(2)若数列是数列,且.求和;
(3)是否存在等差数列是数列?请阐述理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,平面四边形中,,是,中点,,,,将沿对角线折起至,使平面平面,则四面体中,下列结论不正确的是( )
A. 平面
B. 异面直线与所成的角为
C. 异面直线与所成的角为
D. 直线与平面所成的角为
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线:,过其焦点作斜率为1的直线交抛物线于,两点,且线段的中点的纵坐标为4.
(1)求抛物线的标准方程;
(2)若不过原点且斜率存在的直线与抛物线相交于、两点,且.求证:直线过定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知椭圆:经过点.设椭圆的左顶点为,右焦点为,右准线与轴交于点,且为线段的中点.
(1)求椭圆的标准方程;
(2)若过点的直线与椭圆相交于另一点(在轴上方),直线与椭圆相交于另一点,且直线与垂直,求直线的斜率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com