精英家教网 > 高中数学 > 题目详情
在数列{an}中,已知a1=1,Sn是数列{an}的前n项和,且对任意正整数n,Sn+1=4an+2.
(I)令bn=an+1-2an(n=1,2,…),证明{bn}是等比数列,并求{bn}的通项公式;
(II)令f(x)=xln(1+x)-a(x+1),为数列{
1
log2cn+2log2cn+1
}的前n项和,求
lim
n→∞
Tn
分析:(I)利用数列的前n项和与数列的项的关系将已知条件中的和与项的递推关系转化为项间的递推关系,求出
bn+1
bn
的值,利用等比数列的定义得证,再利用等比数列的通项公式求出通项.
(II)先求出{cn}的通项,代入
1
log2cn+2log2cn+1
中,利用裂项相消法求出和Tn,利用基本函数的极限值求出极限.
解答:解(I)an+1=Sn+1-Sn=4(an-an-1)①
∵bn=an+1-2an
∴bn+1=an+2-2an+1
由①得bn+1=4(an+1-an)-2an+1=2(an+1-2an
bn+1
bn
=
2(an+1-2an)
an+1-2an
=2

∴bn}是公比为2的等比数列
∵b1=a2-2a1=3
∴bn=3×2n-1
(II)∵Cn=
bn
3
=2n-1

1
log2cn+2log2cn+1
=
1
n(n+1)

Tn=(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)
=1-
1
n+1

lim
n→∞
Tn=
lim
n→∞
(1-
1
n+1
)=1
点评:解决数列中和与项的递推关系的问题,也不是仿写等式关系,相减利用和与项的关系转化为仅有项的关系;求数列的前n项和关键是判断出数列通项的特点,再选择合适的公式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,已知a1=
1
4
an+1
an
=
1
4
,bn+2=3log 
1
4
an(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证:数列{bn}是等差数列;
(Ⅲ)设cn=
3
bnbn+1
,Sn是数列{cn}的前n项和,求使Sn
m
20
对所有n∈N*都成立的最小正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,已知a1=1,an+1=
an1+2an
(n∈N+)

(1)求a2,a3,a4,并由此猜想数列{an}的通项公式an的表达式;
(2)用适当的方法证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,已知a1=1,a2=2,且an+2等于an•an+1的个位数(n∈N*),若数列{an}的前k项和为2011,则正整数k之值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•淮南二模)在数列{an}中,已知an≥1,a1=1,且an+1-an=
2
an+1+an-1
,n∈N+
(1)记bn=(an-
1
2
2,n∈N+,求证:数列{bn}是等差数列;
(2)求{an}的通项公式;
(3)对?k∈N+,是否总?m∈N+使得an=k?若存在,求出m的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,已知a1=
7
2
,an=3an-1+3n-1(n≥2,n∈N*).
(Ⅰ)计算a2,a3
(Ⅱ)求证:{
an-
1
2
3n
}是等差数列;
(Ⅲ)求数列{an}的通项公式an及其前n项和Sn

查看答案和解析>>

同步练习册答案