精英家教网 > 高中数学 > 题目详情
若f(cosx)=cos3x,则f(sin
π
3
)的值为(  )
A、-1
B、
3
2
C、0
D、1
考点:函数的值
专题:函数的性质及应用
分析:令cosx=sin
π
3
求出x的其中一个值,再代入函数解析式求解即可.
解答: 解:令cosx=sin
π
3
,则x的值可以取
π
6

所以f(sin
π
3
)=f(cos
π
6
)=cos
π
2
=0,
故选:C.
点评:本题考查复合函数的函数值,注意自变量的值,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2
3
sin(
π
4
x)在同一半周期内的图象过点O,P,Q,其中O为坐标原点,P为函数图象的最高点,Q为函数f(x)的图象与x轴的正半轴的交点.
(1)试判断△OPQ的形状,并说明理由.
(2)若将△OPQ绕原点O按逆时针方向旋转角a(0<a<
π
2
)时,顶点P,Q,恰好同时落在曲线y=
k
x
(x>0)上(如图所示),求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两名同学在5次体能测试中的成绩的茎叶图如图所示,设
.
x1
.
x2
分别表示甲、乙两名同学测试成绩的平均数,s1,s2分别表示甲、乙两名同学测试成绩的标准差,则有(  )
A、
.
x1
=
.
x2
,s1<s2
B、
.
x1
=
.
x2
,s1>s2
C、
.
x1
.
x2
,s1>s2
D、
.
x1
=
.
x2
,s1=s2

查看答案和解析>>

科目:高中数学 来源: 题型:

设A、B、C是三角形的三个内角,下列关系恒成立的是(  )
A、sin(A+B)=sinC
B、cos(A+B)=cosC
C、tan(A+B)=tanC
D、sin
A+B
2
=sin
C
2

查看答案和解析>>

科目:高中数学 来源: 题型:

对于给定的任意实数x,y,z(z≠0且z≠6),记xOy平面上点P(x,y)到三点A(z,z)、B(6-z,z-6)、C(0,0)的三个距离中的最大值为g(x,y,z),则g(x,y,z)的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在区间(0,+∞)上的函数f(x)若满足:(1)f(x)不恒为零;(2)对任意实数x,p,都有f(xp)=pf(x),我们就称f(x)为“降幂函数”
(1)判断y=log2x是否为“降幂函数”,并说明理由;
(2)若函数f(x)为“降幂函数”,证明:f(m•n)=f(n)+f(m);
(3)若函数f(x)为“降幂函数”,且在(0,+∞)上单调递增,f(2)=1,f(x)满足f(m
1+sin2θ
+2sinθ•sin(θ+
π
3
)+cos2θ)-f(m)>1对一切θ∈[0,
π
2
]上恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)在x>0时,f(x)=
1
3
x3-lnx,则f(x)在[-2,-
1
2
]上的值域为(  )
A、[-ln2-
1
24
,-
1
3
]
B、[ln2-
8
3
,-ln2-
1
24
]
C、[ln2-
8
3
,-
1
3
]
D、[-
1
3
,ln2]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合 A={2,-2},B={x|x2-ax+4=0},若A∪B=A,则实数a满足(  )
A、{a|-4<a<4}
B、{a|-2<a<2}
C、{-4,4}
D、{a|-4≤a≤4}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆T:
x2
a2
+
y2
b2
=1(a>b>0)经过点P(2,
2
),一个焦点F的坐标是(2,0).
(1)求椭圆T的方程;
(2)设直线l:y=kx+m与椭圆T交于A、B两点,O为坐标原点,椭圆T的离心率为e,若kOA•kOB=e2-1,求证:△AOB的面积为定值.

查看答案和解析>>

同步练习册答案