【题目】公比为4的等比数列{bn}中,若Tn是数列{bn}的前n项积,则有仍成等比数列,且公比为4100;类比上述结论,在公差为3的等差数列{an}中,若Sn是{an}的前n项和,则有________也成等差数列,该等差数列的公差为________.
科目:高中数学 来源: 题型:
【题目】为响应十九大报告提出的实施乡村振兴战略,某村庄投资 万元建起了一座绿色农产品加工厂.经营中,第一年支出 万元,以后每年的支出比上一年增加了 万元,从第一年起每年农场品销售收入为 万元(前 年的纯利润综合=前 年的 总收入-前 年的总支出-投资额 万元).
(1)该厂从第几年开始盈利?
(2)该厂第几年年平均纯利润达到最大?并求出年平均纯利润的最大值.
【答案】(1) 从第 开始盈利(2) 该厂第 年年平均纯利润达到最大,年平均纯利润最大值为 万元
【解析】试题分析:(1)根据公式得到,令函数值大于0解得参数范围;(2)根据公式得到,由均值不等式得到函数最值.
解析:
由题意可知前 年的纯利润总和
(1)由 ,即 ,解得
由 知,从第 开始盈利.
(2)年平均纯利润
因为 ,即
所以
当且仅当 ,即 时等号成立.
年平均纯利润最大值为 万元,
故该厂第 年年平均纯利润达到最大,年平均纯利润最大值为 万元.
【题型】解答题
【结束】
21
【题目】已知数列 的前 项和为 ,并且满足 , .
(1)求数列 通项公式;
(2)设 为数列 的前 项和,求证: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】家用电器一件,现价2000元,实行分期付款,每期付款数相同,每期为一月,购买后一个月付款一次,共付12次,即购买后一年付清,如果按月利率8‰,每月复利一次计算,那么每期应付款多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列关于用斜二测画法画直观图的说法中,错误的是( )
A. 用斜二测画法画出的直观图是在平行投影下画出的空间图形
B. 几何体的直观图的长、宽、高与其几何体的长、宽、高的比例相同
C. 水平放置的矩形的直观图是平行四边形
D. 水平放置的圆的直观图是椭圆
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题正确的个数是( )
①命题“x0∈R,x02+1>3x0”的否定是“x∈R,x2+1≤3x”;
②“函数f(x)=cos2ax﹣sin2ax的最小正周期为π”是“a=1”的必要不充分条件;
③x2+2x≥ax在x∈[1,2]上恒成立(x2+2x)min≥(ax)max在x∈[1,2]上恒成立;
④“平面向量 与 的夹角是钝角”的充分必要条件是“ <0”.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从一批柚子中,随机抽取100个,获得其重量(单位:克)数据按照区间,,,进行分组,得到概率分布直方图,如图所示.
(1)根据频率分布直方图计算抽取的100个柚子的重量众数的估计值.
(2)用分层抽样的方法从重量在和的柚子中共抽取5个,其中重量在的有几个?
(3)在(2)中抽出的5个柚子中,任取2人,求重量在的柚子最多有1个的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动点 P 与定点的距离和它到定直线 x 4 的距离的比是1: 2 ,记动点 P 的轨迹为曲线 E.
(1)求曲线 E 的方程;
(2)设 A 是曲线 E 上的一个点,直线 AF 交曲线 E 于另一点 B,以 AB 为边作一个平行四边形,顶点 A、B、C、D 都在轨迹 E 上,判断平行四边形 ABCD 能否为菱形,并说明理由;
(3)当平行四边形 ABCD 的面积取到最大值时,判断它的形状,并求出其最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆的左、右焦点为, ,右顶点为,上顶点为,若, 与轴垂直,且.
(1)求椭圆的方程;
(2)过点且不垂直与坐标轴的直线与椭圆交于, 两点,已知点,当时,求满足的直线的斜率的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com