数学英语物理化学 生物地理
数学英语已回答习题未回答习题题目汇总试卷汇总
求证:二项式x2n-y2n (n∈N*)能被x+y整除.
证明略
(1)当n=1时,x2-y2=(x+y)(x-y),
能被x+y整除,命题成立.
(2)假设当n=k(k≥1,k∈N*)时,x2k-y2k能被x+y整除,
那么当n=k+1时,
x2k+2-y2k+2=x2·x2k-y2·y2k
=x2x2k-x2y2k+x2y2k-y2y2k
=x2(x2k-y2k)+y2k(x2-y2),
显然x2k+2-y2k+2能被x+y整除,
即当n=k+1时命题成立.
由(1)(2)知,对任意的正整数n命题均成立.
科目:高中数学 来源: 题型:044
求证:二项式x2n-y2n(n∈N*)能被x+y整除
科目:高中数学 来源:数学教研室 题型:044
科目:高中数学 来源: 题型:解答题
百度致信 - 练习册列表 - 试题列表
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区