精英家教网 > 高中数学 > 题目详情
1.若α∈(0,$\frac{π}{2}$),且sin2α+cos2α=$\frac{1}{4}$,则tanα=$\sqrt{3}$.

分析 由已知利用二倍角的余弦函数公式化简可求cosα,进而利用同角三角函数基本关系式可求tanα的值.

解答 解:∵sin2α+cos2α=$\frac{1}{4}$,
∴sin2α+(cos2α-sin2α)=cos2α=$\frac{1}{4}$,
∵α∈(0,$\frac{π}{2}$),
∴cosα=$\frac{1}{2}$,sinα=$\sqrt{1-co{s}^{2}α}$=$\frac{\sqrt{3}}{2}$,
∴tanα=$\sqrt{3}$.
故答案为:$\sqrt{3}$.

点评 本题主要考查了二倍角的余弦函数公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=x2-ax+1,x∈[-1,2].
(1)若函数f(x)为单调函数,求a的取值范围;
(2)求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知变量x,y有如表中的观察数据,得到y对x的回归方程是$\widehaty=0.83x+a$,则其中a的值是(  )
x0134
y2.44.54.66.5
A.2.64B.2.84C.3.95D.4.35

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数y=x2在P(1,1)处的切线与双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线平行,则双曲线的离心率是(  )
A.5B.$\sqrt{5}$C.$\frac{\sqrt{5}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某校高三共有男生400名,从所有高三男生中随机抽取20名男生测量身高(单位:cm)作为样本,得到频率分布表与频率分布直方图1(部分)如表:
 分组频数 频率 
[150,160)1 
[160,170) n1 f1
[170,180)  n2 f2 
[180,190)5
[190,200]3 

(Ⅰ)求n1、n2、f1、f2
(Ⅱ)试估计身高不低于180cm的该校高三男生人数,并说明理由;
(Ⅲ)从样本中不低于180cm的男生身高,绘制成茎叶图(图2);
现从身高不低于185cm的男生中任取3名参加选拔性测试,求至少有两位身高不低于190cm的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=sin(x+$\frac{π}{6}$)-tanα•cosx,且f($\frac{π}{3}$)=$\frac{1}{2}$.
(1)求tanα的值;
(2)求函数g(x)=f(x)+cosx的对称轴与对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=|x-a|.
(1)当a=2时,解不等式f(x)≥4-|x-1|;
(2)若f(x)≤1的解集为[0,2],$\frac{1}{m}$+$\frac{1}{2n}$=a(m>0,n>0),求:m+2n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,a,b,c分别是角A,B,C的对边,且$\sqrt{3}$asinC=c(1+cosA).
(1)求角A;
(2)若a2=16-3bc,且S△ABC=$\sqrt{3}$,求b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在(1-x)5+(1-x)6+(1-x)7+(1-x)8的展开式中,含x3的项的系数是(  )
A.121B.-74C.74D.-121

查看答案和解析>>

同步练习册答案