精英家教网 > 高中数学 > 题目详情
一个几何体是由圆柱ADD1A1和三棱锥E-ABC组合而成,点A、B、C在圆O的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,如图2所示,其中EA⊥平面ABC,AB⊥AC,AB=AC,AE=2.
精英家教网
(1)求证:AC⊥BD;
(2)求三棱锥E-BCD的体积.
分析:(1)由已知中EA⊥平面ABC,AB⊥AC,结合线面垂直的定义及线面垂直的判定定理,我们易求出AC⊥平面EBD,进而得到答案.
(2)要求三棱锥E-BCD的体积,我们有两种办法,
方法一是利用转化思想,将三棱锥E-BCD的体积转化为三棱锥C-EBD的体积,求出棱锥的高和底面面积后,代入棱锥体积公式,进行求解;
方法二是根据VE-BCD=VE-ABC+VD-ABC,将棱锥的体积两个棱次的体积之差,求出两个辅助棱锥的体积后,得到结论.
解答:精英家教网(1)证明:因为EA⊥平面ABC,AC?平面ABC,所以EA⊥AC,即ED⊥AC.
又因为AC⊥AB,AB∩ED=A,所以AC⊥平面EBD.
因为BD?平面EBD,所以AC⊥BD.(4分)
(2)解:因为点A、B、C在圆O的圆周上,且AB⊥AC,所以BC为圆O的直径.
设圆O的半径为r,圆柱高为h,根据正(主)视图、侧(左)视图的面积可得,
2rh+
1
2
r×2=10
2rh+
1
2
×2r×2=12.
(6分)
解得
r=2
h=2.

所以BC=4,AB=AC=2
2

以下给出求三棱锥E-BCD体积的两种方法:
方法1:由(1)知,AC⊥平面EBD,
所以VE-BCD=VC-EBD=
1
3
S△EBD×CA
.(10分)
因为EA⊥平面ABC,AB?平面ABC,
所以EA⊥AB,即ED⊥AB.
其中ED=EA+DA=2+2=4,因为AB⊥AC,AB=AC=2
2

所以S△EBD=
1
2
×ED×AB=
1
2
×4×2
2
=4
2
.(13分)
所以VE-BCD=
1
3
×4
2
×2
2
=
16
3
.(14分)
方法2:因为EA⊥平面ABC,
所以VE-BCD=VE-ABC+VD-ABC=
1
3
S△ABC×EA+
1
3
S△ABC×DA=
1
3
S△ABC×ED
.(10分)
其中ED=EA+DA=2+2=4,因为AB⊥AC,AB=AC=2
2

所以S△ABC=
1
2
×AC×AB=
1
2
×2
2
×2
2
=4
.(13分)
所以VE-BCD=
1
3
×4×4=
16
3
.(14分)
点评:本题考查的知识点是棱锥的体积公式,简单空间图形的三视图,直线与平面垂直的性质,其中根据已知中三视图的体积,判断出几何体中相关几何量的大小,结合已知中其中量,进而判断出线面关系是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一个几何体是由圆柱ADD1A1和三棱锥E-ABC组合而成,点A、B、C在圆O的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,如图所示,其中EA⊥平面ABC,AB⊥AC,AB=AC,AE=2.
精英家教网
(1)求证:AC⊥BD;

(2)求二面角A-BD-C的平面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体是由圆柱ADD1A1和三棱锥E-ABC组合而成,点A、B、C在圆柱上底面圆O的圆周上,EA⊥平面ABC,AB⊥AC,AB=AC,其正视图、侧视图如图所示.
精英家教网
(1)求证:AC⊥BD;
(2)求锐二面角A-BD-C的大小.

查看答案和解析>>

科目:高中数学 来源:广东省模拟题 题型:解答题

一个几何体是由圆柱ADD1A1和三棱锥E-ABC组合而成,点A,B,C在圆O的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,如图所示,其中EA⊥平面ABC,AB⊥AC,AB=AC,AE=2。
(1)求证:AC⊥BD;
(2)求三棱锥E-BCD的体积。

查看答案和解析>>

科目:高中数学 来源:2011年福建省三明二中高考数学二模试卷(文科)(解析版) 题型:解答题

一个几何体是由圆柱ADD1A1和三棱锥E-ABC组合而成,点A、B、C在圆O的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,如图2所示,其中EA⊥平面ABC,AB⊥AC,AB=AC,AE=2.
(1)求证:AC⊥BD;
(2)求三棱锥E-BCD的体积.

查看答案和解析>>

同步练习册答案