精英家教网 > 高中数学 > 题目详情
已知点集L={(x,y)|y=
m
n
}
,其中
m
=(2x-b,1),
n
=(1,1+b)
,又知点列Pn(an,bn)∈L,P1为L与y轴的交点.等差数列{an}的公差为1,n∈N*
(Ⅰ)求Pn(an,bn);
(Ⅱ)若f(n)=
an,n=2k-1
bn,n=2k
k∈N*,f(k+11)=2f(k)
,求出k的值;
(Ⅲ)对于数列{bn},设Sn是其前n项和,是否存在一个与n无关的常数M,使
Sn
S2n
=M
,若存在,求出此常数M,若不存在,请说明理由.
分析:(I)由题设有L={(x,y)|y=2x+1},可得直线y=2x+1,它与y轴的交点为(0,1)可求a1=0,又数列{an}是等差数列可求an=n-1,bn=2n-1,从而可求 
(II)由f(n)=
an
bn
 
=
n-1,n=2k-1
2n-1,n=2k
(k∈N*)
,从而分k为奇数时,k为偶数代入求解
(III)由bn=2n-1可求Sn=n2,代入
Sn
S2n
=M
求解即可
解答:解:(I)由题设有L={(x,y)|y=2x+1},故L为直线y=2x+1,它与y轴的交点为P1(0,1)(2分) 
∴a1=0,又数列{an}是以1为公差的等差数列,所以an=n-1,bn=2an+1=2(n-1)+1=2n-1
故Pn(n-1,2n-1)(5分) 
(II)f(n)=
an
bn
 
=
n-1,n=2k-1
2n-1,n=2k
(k∈N*)
(5分) 
当k为奇数时,f(k+11)=2f(k)⇒2(k+11)-1=2(k-1)⇒k不存在;
当k为偶数时,f(k+11)=2f(k)⇒(k+11)-1=2(2k-1)⇒k=4.  (10分) 
(III)∵bn=2n-1,∴Sn=n2,假设存在与n无关的常数M,使
Sn
S2n
=M

n2
(2n)2
=M⇒M=
1
4
,故存在与n无关的常数M=
1
4
,使
Sn
S2n
=M
. (14分)
点评:本题以新定义为切入点考查了向量 的数量积的坐标表示,等差数列的通项公式及求和公式的应用
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点集L={(x,y)|y=
m
n
}
,其中
m
=(2x-1,1),
n
=(1,2)
,点列Pn(an,bn)在L中,P1为L与y轴的公共点,等差数列{an}的公差为1.
(I)求数列{an},{bn}的通项公式;
(Ⅱ)若cn=
5
n|
P1Pn
|
(n≥2),c1=1
,数列{cn}的前n项和Sn满足M+n2Sn≥6n对任意的n∈N*都成立,试求M的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点集L={(x,y)|y=
m
n
}
,其中
m
=(2x-b,1),
n
=(1,b+1),点列Pn(an,bn)在L中,P1为L与y轴的交点,等差数列{an}的公差为1,n∈N*
(I)求数列{bn}的通项公式;
(Ⅱ)若f(n)=
an  n为正奇数
bn  n为正偶数
,令Sn=f(1)+f(2)+f(3)+…+f(n);试写出Sn关于n的函数解析式;

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点集L={(x,y)|y=
m
n
}
,其中
m
=(2x-b,1),
n
=(1,b+1)
,点列Pn(an,bn)在L中,P1为L与y轴的交点,等差数列{an}的公差为1,(n∈N*
(1)求数列{an},{bn}的通项公式;
(2)若cn=
5
n•|P1Pn|
,(n≥2)
,求
lim
n→∞
(c2+c3+…+cn)

(3)若f(n)=
an,n=2k-1
bn,n=2k
(k∈N*)
,是否存在k∈N*,使得f(k+11)=2f(k),若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理) 已知点集L={(x,y)|y=
m
n
}
,其中
m
=(x-2b,2)
n
=(1,b+1)
,点Pn(an,bn)∈L,P1=L∩{(x,y)|x=1},且an+1-an=1,则数列{bn}的通项公式为
 

查看答案和解析>>

同步练习册答案