精英家教网 > 高中数学 > 题目详情

设定义在R上的函数满足:①对任意的实数,有②当.

数列满足.

(1)求证:,并判断函数的单调性;

(2)令是最接近的正整数,即

,求 

 

【答案】

 

(1)证明略

(2)

【解析】解:(1)令,.               

  ∴ .∵.

.∴  ……………  3分

     ∴

   ∴

上是增函数.             ………………6分

(2)

,  .

    即.

都是正整数,∴.

∴满足的正整数,有(个)

     

… 12分

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设定义在R上的函数满足:①对任意的实数R,有

(1)求

(2)若在R上为单调递增函数,求数列的通项的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

设定义在R上的函数满足:①对任意的实数,有②当.数列满足.

(Ⅰ)求证:,并判断函数的单调性;

(Ⅱ)令是最接近的正整数,即,设,求 

   

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义在R上的函数满足,若,则的取值范围是

A.                                   B.

C.                                                      D.

查看答案和解析>>

科目:高中数学 来源:辽宁省沈阳二中2011-2012学年高三上学期10月月考(数学文) 题型:填空题

 设定义在R上的函数满足对,且,都有,则的元素个数为        

 

查看答案和解析>>

同步练习册答案