精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

以平面直角坐标系的原点为极点, 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,直线的参数方程为,的极坐标方程为.

1)求直线的普通方程与圆的直角坐标方程;

2)设曲线与直线交于两点,点的直角坐标为,的值.

【答案】1)直线的普通方程为: C的直角坐标方程为;(2

【解析】试题分析:(1)消去参数可得直线的普通方程,由公式可化极坐标方程为直角坐标方程;(2)直线的参数方程是过点的标准参数方程,因此把直线参数方程代入圆的直角坐标方程,方程的解,则,由韦达定理可得.

试题解析:(1)直线的普通方程为:

,所以

所以曲线C的直角坐标方程为(或写成)..

2)点P21)在直线上,且在圆C内,把代入,,设两个实根为,,即异号.

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xoy中,曲线C的参数方程是(θ为参数).以坐标原点O为极点,x轴正半轴为极轴,建立极坐标系,直线l的极坐标方程为:

(1)求曲线C的极坐标方程;

(2)设直线θ=与直线l交于点M,与曲线C交于P,Q两点,已知|OM||OP||OQ)=10,求t的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线与二次曲线4个不同的交点,由下面的草图可以看出,下面三个结论是成立的,请给出证明.

(1).两曲线的4个交点中,至少有两个交点位于轴的下方;

(2).抛物线必与轴有两个不同的交点,记为

(3).两曲线的4个交点中,必存在一点,使.

.的不同取值会有无数个图形,此处仅就各给出一个示意图,同时也就限制由图看出的解答.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱ABCA1B1C1中(侧棱与底面垂直的棱柱),AC=BC=1,∠ACB=90°,AA1D A1B1的中点.

(1)求证:C1D平面AA1B1B

(2)当点F BB1上的什么位置时,AB1平面C1DF ?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为倡导全体学生为特困学生捐款,举行一元钱,一片心,诚信用水活动学生在购水处每领取一瓶矿泉水,便自觉向捐款箱中至少投入一元钱现统计了连续5天的售出和收益情况,如下表:

售出水量x(单位:箱)

7

6

6

5

6

收益y(单位:元)

165

142

148

125

150

(Ⅰ) 若xy成线性相关,则某天售出8箱水时,预计收益为多少元?

(Ⅱ) 期中考试以后,学校决定将诚信用水的收益,以奖学金的形式奖励给品学兼优的特困生,规定:特困生考入年级前200名,获一等奖学金500元;考入年级201—500 名,获二等奖学金300元;考入年级501名以后的特困生将不获得奖学金。甲、乙两名学生获一等奖学金的概率均为,获二等奖学金的概率均为,不获得奖学金的概率均为.

⑴在学生甲获得奖学金条件下,求他获得一等奖学金的概率;

⑵已知甲、乙两名学生获得哪个等第的奖学金是相互独立的,求甲、乙两名学生所获得奖学金总金额X 的分布列及数学期望

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥的三条侧棱两两垂直,分别是棱的中点.

(1)证明:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为实数.

(1)时,求的最小值

(2)若存在实数,使得对任意实数都有成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】19的九个数字中取三个偶数四个奇数,试问:

①能组成多少个没有重复数字的七位数?

②上述七位数中三个偶数排在一起的有几个?

③在①中的七位数中,偶数排在一起、奇数也排在一起的有几个?

④在①中任意两偶数都不相邻的七位数有几个?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为平面上两个点集,满足,且任意三点不共线.在集合间各连若干条线段,每条线段均一个端点在集合中,另一个端点在集合中,且任意两点间至多连一条线段,记所有线段构成的集合为.若集合满足对于集合中任意一点均至少连出条线段,则称集合一好的”.试确定的最大值,使得去掉任意一条线段,集合均不是一好的.

查看答案和解析>>

同步练习册答案