精英家教网 > 高中数学 > 题目详情
等比数列{an}的首项a1=-1,前n项和为Sn,已知
S10
S5
=
31
32
,则a2等于(  )
A、
2
3
B、-
1
2
C、2
D、
1
2
分析:根据q5=
S10-S5
S5
得到q5,进而求出q,再由首项a1的值,利用等比数列的通项公式即可求出a2的值.
解答:解:∵
S10
S5
=
31
32

∴q5=
S10-S5
S5
=
S10
S5
-1
=
31
32
-1=-
1
32

∴q=-
1
2

则a2=a1q=(-1)×(-
1
2
)=
1
2

故选D
点评:本题主要考查了等比数列的通项公式及求和公式的应用.本题巧妙利用了在同一等比数列中项数相等的几组数列仍是等比数列的性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等比数列{an}的首项为a1=
1
3
,公比q满足q>0且q≠1.又已知a1,5a3,9a5成等差数列.
(1)求数列{an]的通项
(2)令bn=log3
1
an
,求证:对于任意n∈N*,都有
1
2
1
b1b2
1
b2b3
+…+
1
bnbn+1
<1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}的首项a1>0,公比q>-1,q≠0,设数列{bn}的通项公式bn=an+1+an+2(n∈N*),数列{an},{bn}的前n项和分别记为An,Bn,试比较An与Bn的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•上海模拟)已知等比数列{an}的首项a1=1,公比为x(x>0),其前n项和为Sn
(1)求函数f(x)=
lim
n→+∞
Sn
Sn+1
的解析式;
(2)解不等式f(x)>
10-3x
8

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•普陀区一模)无穷等比数列{an}的首项为3,公比q=-
1
3
,则{an}的各项和S=
9
4
9
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•韶关二模)已知各项均为正数的等比数列{an}的首项a1=2,Sn为其前n项和,若5S1,S3,3S2成等差数列.
(1)求数列{an}的通项公式;
(2)设bn=log2ancn=
1bnbn+1
,记数列{cn}的前n项和Tn.若对?n∈N*,Tn≤k(n+4)恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案