精英家教网 > 高中数学 > 题目详情
6.(1)对于函数f(x),g(x),已知f(6)=5,g(6)=4,f′(6)=3,g′(6)=1.如果h(x)=f(x)•g(x)-1,求h′(6)的值;
(2)直线y=$\frac{1}{2}$x+b能作为函数f(x)=sinx图象的切线吗?若能,求出切点坐标;若不能,简述理由.

分析 (1)运用导数的运算法则,主要是积的导数,计算即可得到所求值;
(2)设切点为(m,n),求得导数,求得切线的斜率,设cosm=$\frac{1}{2}$,解方程即可判断,可得切点坐标.

解答 解:(1)h(x)=f(x)•g(x)-1的导数为h′(x)=f′(x)g(x)+f(x)g′(x),
即有h′(6)=f′(6)g(6)+f(6)g′(6)=3×4+5×1=17;   
(2)函数f(x)=sinx的导数为f′(x)=cosx,
设切点为(m,n),可得cosm=$\frac{1}{2}$,
解得m=2kπ+$\frac{π}{3}$或2kπ-$\frac{π}{3}$,k∈Z,
则直线y=$\frac{1}{2}$x+b能表示切线,
切点为(2kπ+$\frac{π}{3}$,$\frac{\sqrt{3}}{2}$)或(2kπ-$\frac{π}{3}$,$\frac{\sqrt{3}}{2}$)(k∈Z).

点评 本题考查导数的运算性质,以及导数的几何意义,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.化简:
(1)cosθtanθ;
(2)$\frac{2co{s}^{2}α-1}{1-2si{n}^{2}α}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知:a∈R,b∈R,若集合{a,$\frac{b}{a}$,1}={a2,a+b,0},则a2015+b2015的值为(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知f(x)是R上的奇函数,且当x>0时f(x)=x(1-x),则当x<0时f(x)的解析式是f(x)=(  )
A.-x(x-1)B.-x(x+1)C.x(x-1)D.x(x+1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.顶点在原点且以双曲线$\frac{{x}^{2}}{3}$-y2=1的右焦点为焦点的抛物线方程是y2=8x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知a,b为正数,且直线x-(2b-3)y+6=0与直线2bx+ay-5=0互相垂直,则2a+3b的最小值为$\frac{25}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.定义在R上的函数f(x)满足f(x)=$\left\{\begin{array}{l}{x,-1≤x<0}\\{{x}^{2},0≤x<1}\end{array}\right.$,且f(x+2)=f(x),g(x)=$\frac{1}{x-2}$.则方程f(x)=g(x)在区间[-3,7]上的所有实数根之和最接近下列哪个数(  )
A.10B.8C.7D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若${log_{\frac{4}{5}}}a$<1,则a的取值范围是($\frac{4}{5},+∞$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若(1-ax)5的展开式中含有x3的系数为-80,则实数a=2.

查看答案和解析>>

同步练习册答案