精英家教网 > 高中数学 > 题目详情
4.程序框图如图所示,若输出的结果为-9,则程序框图中判断框内的x值可以是(  )
A.3B.5C.7D.9

分析 模拟执行程序,依次写出每次循环得到的S,n的值,由题意可得5<x,且7≥x,从而可得判断框内的x值.

解答 解:模拟执行程序,可得
S=0,n=1
满足条件n<x,执行循环体,S=-1,n=3
满足条件n<x,执行循环体,S=-4,n=5
满足条件n<x,执行循环体,S=-9,n=7
此时,应该不满足条件n<x,退出循环,输出S的值为-9.
故5<x,且7≥x,
则程序框图中判断框内的x值可以是7.
故选:C.

点评 本题考查程序框图,尤其考查循环结构.对循环体每次循环需要进行分析并找出内在规律.本题属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.在厄尔尼诺现象中,经观测,某昆虫的产卵数y与温度x有关,现将收集到的温度xi和产卵数yi(i=1,2,…,7)的7组观测数据作了初步处理,得到如图的散点图及一些统计量表.
$\overline{x}$$\overline{y}$$\overline{z}$$\sum_{i=1}^{7}$(xi-$\overline{x}$)2$\sum_{i=1}^{7}$(xi-$\overline{x}$)(yi-$\overline{y}$)$\sum_{i=1}^{7}$(xi-$\overline{x}$)(zi-$\overline{z}$)
27.481.313.61482935.1340
表中zi=lnyi,$\overline{z}$=$\frac{1}{7}$$\sum_{i=1}^{7}$zi
(1)根据散点图判断,y=a+bx与y=c1e${\;}^{{c}_{2}x}$哪一个适宜作为y与x之间的回归方程模型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表中数据.
①试求y关于x回归方程;
②已知用人工培养该昆虫的成本h(x)与温度x和产卵数y的关系为h(x)=x(lny-9.43)+175,当温度x为何值时,培养成本的预报值最小?
附:对于一组数据(u1,v1),(u2,v2),…(un,vn),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为β=$\frac{\sum_{i=1}^{n}({u}_{i}-\overline{u})({v}_{i}-\overline{v})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,α=$\overline{v}$-β$\overline{u}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知二次函数f(x)=ax2+bx+c.
(1)若f(-1)=0,试判断函数f(x)的零点个数;
(2)是否存在实数a,b,c,使得f(x)同时满足以下条件:
①对?x∈R,f(x-2)=f(-x);
②对?x∈R,0≤f(x)-x≤$\frac{1}{2}$(x-1)2?如果存在,求出a,b,c的值,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知点Pn(an,bn)(n∈N*)都在直线l:y=2x+2上,P1为直线l与x轴的交点,数列{an}成等差数列,公差为1.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)若$f(n)=\left\{\begin{array}{l}{a_n},n为奇数\\{b_n},n为偶数\end{array}\right.$问是否存在k∈N*,使得f(k+5)=2f(k)-2成立?若存在,求出k的值,若不存在,说明理由;
(Ⅲ)求证:$\frac{1}{{|{p_1}{p_2}{|^2}}}+\frac{1}{{|{p_1}{p_3}{|^2}}}+…+\frac{1}{{|{p_1}{p_n}{|^2}}}<\frac{2}{5}$(n≥2,n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知p:?x∈R,x2-3x+3≤0,则¬p为:?x∈R,x2-3x+3>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.方程3Cx-34=5Ax-42的根为(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在平面直角坐标系xOy中,已知直线l过点P($\sqrt{3}$,2),斜倾角为60°,以原点O为极点,x轴的非负半轴为极轴,取相同的单位长度建立极坐标系,曲线C的极坐标方程为ρ2=$\frac{4}{1+si{n}^{2}θ}$.
(1)求曲线C的直角坐标方程;
(2)设直线l与曲线C交于A、B两点,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若(ax2+$\frac{1}{\sqrt{x}}$)5的展开式中x5的系数是80,则实数a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,点E、F分别是正方体ABCD-A1B1C1D1的棱AD、AA1的中点,G是棱CC1上一点.
(Ⅰ)求证:平面A1B1E⊥平面D1FG;
(Ⅱ)若AB=2,CG=2-$\sqrt{3}$,M是棱DD1的中点,点N在线段D1G上,MN∥DC,求二面角D1-FN-M的大小.

查看答案和解析>>

同步练习册答案