精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线,过焦点F的直线l与抛物线交于ST,且.

1)求抛物线C的方程;

2)设点Px轴下方(不含x轴)一点,抛物线C上存在不同的两点AB满足,其中为常数,且两点DE均在C上,弦AB的中点为M.

①若点P坐标为,抛物线过点AB的切线的交点为N,证明:点N在直线MP上;

②若直线PM交抛物线于点Q,求证;为定值(定值用表示).

【答案】(1)(2)①证明见解析②证明见解析,定值为

【解析】

1)设直线,联立直线与抛物线可得,则由韦达定理得,,代入中即可求得,进而得到抛物线方程;

2)设,则,,①由可得,将点的坐标代入抛物线中可得,则,进而得到,是方程的两根,从而求得点、点的坐标,利用导数求得切线方程,联立即可求得交点,因而得证;

②由,得,代回抛物线方程, 同理①整理后可得,为方程的两根,求得点的坐标,则,将点坐标代入求证即可

1)由题,显然直线的斜率存在,设,,

联立得,,

由韦达定理得,,

,

,

,

则抛物线方程为

2)设,则,,

①由,,得,

D在抛物线C上,

,

,则,

,所以,,

同理可得,

,是方程的两根,

解得,

不妨,,则中点,直线

,所以,

得两切线,

所以,解得,,

所以N在直线PM

②设,,

,得,

D入抛物线C,

,

,

化简得:,

同理将E代入抛物线C得:,

,为方程的两根,

由韦达定理得,,,

所以,,

显然,

所以设,

所以,,

,为定值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知三棱锥(如图1)的平面展开图(如图2)中,四边形为边长为的正方形,均为正三角形,在三棱锥中.

1)求证:平面平面

2)若点在棱上,满足,点在棱上,且,求得取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,底面为正三角形,底面,点在线段上,平面平面.

(1)请指出点的位置,并给出证明;

(2)若,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】条形图给出的是2017年全年及2018年全年全国居民人均可支配收入的平均数与中位数,饼图给出的是2018年全年全国居民人均消费及其构成,现有如下说法:

①2018年全年全国居民人均可支配收入的平均数的增长率低于2017年;

②2018年全年全国居民人均可支配收入的中位数约是平均数的

③2018年全年全国居民衣(衣着)食(食品烟酒)住(居住)行(交通通信)的支出超过人均消费的.

则上述说法中,正确的个数是( )

A. 3B. 2C. 1D. 0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,底面为正三角形,底面,点在线段上,平面平面.

(1)请指出点的位置,并给出证明;

(2)若,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆 ()的左、右焦点分别为,过的直线交椭圆于两点,若椭圆的离心率为的周长为.

(1)求椭圆的方程;

(2)设不经过椭圆的中心而平行于弦的直线交椭圆于点,设弦的中点分别为,证明:三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为F,准线为l,过F的直线与E交于AB两点,CD分别为ABl上的射影,且MAB中点,则下列结论正确的是(

A.B.为等腰直角三角形

C.直线AB的斜率为D.的面积为4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中,角所对的边分别是的面积为,且.

(1)求的值;

(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是圆上的任意一点,是过点且与轴垂直的直线,是直线轴的交点,点在直线上,且满足.当点在圆上运动时,记点的轨迹为曲线.

(1)求曲线的方程;

(2)已知点,过的直线交曲线两点,交直线于点.判定直线的斜率是否依次构成等差数列?并说明理由.

查看答案和解析>>

同步练习册答案