分析 由条件求得cosy=-$\frac{3}{5}$,根据y是第二象限角,可得siny的值,可得tany的值,再利用二倍角的正切公式求得tan2y.
解答 解:∵cosxcos(x+y)+sinxsin(x+y)=cosy=-$\frac{3}{5}$,y是第二象限角,∴siny=$\sqrt{{1-cos}^{2}y}$=$\frac{4}{5}$,
故tany=$\frac{siny}{cosy}$=-$\frac{4}{3}$,则tan2y=$\frac{2tany}{1{-tan}^{2}y}$=$\frac{24}{7}$,
故答案为:$\frac{24}{7}$.
点评 本题主要考查两角和差的余弦公式,同角三角函数的基本关系,二倍角的正切公式的应用,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-3,2] | B. | [-3,2] | C. | (-3,2) | D. | (-∞,-3) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com