精英家教网 > 高中数学 > 题目详情

设函数.
(1)当时,求函数的单调区间;
(2)当时,若恒成立,求的取值范围.

(1)函数单调增区间为,单调减区间为;(2).

解析试题分析:(1)此类题目考查利用导数研究函数的单调性,解法是:求函数的导数,令导数大于零,解得单调增区间(注意函数的定义域),令导数小于零,解得单调减区间(注意定义域);(2)先将不等式恒成立问题转化为恒成立问题,然后可用两种方法求出参数的范围,法一是:令,通过导数求出该函数的最小值,由这个最小值大于或等于0即可解出的取值范围(注意题中所给的);法二是:先分离参数得,再令,只须求出该函数的最小值,从而,同时结合题中所给的范围可得参数的取值范围.
试题解析:(1)函数的定义域为                  1分
           2分
时,为增函数
时,为减函数
时,为增函数
所以,函数单调增区间为,单调减区间为          5分
(2)因为
所以

法一:令            7分
所以
因为时是增函数                 8分
所以                       9分
又因为,所以,                   10分
所以为增函数
要使恒成立,只需           11分
所以                               12分
法二:因为,所以
              6
                        7分
             8分
因为,所以               9分
因此时,,那么上为增函数   10分
所以
所以                             1

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数f(x)=ln xx2-(a+1)x(a>0,a为常数).
(1)讨论f(x)的单调性;
(2)若a=1,证明:当x>1时,f(x)< x2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知x=3是函数f(x)=aln(1+x)+x2-10x的一个极值点.
(1)求a
(2)求函数f(x)的单调区间;
(3)若直线yb与函数yf(x)的图象有3个交点,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量m=(ex,ln xk),n=(1,f(x)],mn(k为常数),曲线yf(x)在点(1,f(1))处的切线与y轴垂直,F(x)=xexf′(x).
(1)求k的值及F(x)的单调区间;
(2)已知函数g(x)=-x2+2ax(a为正实数),若对于任意x2∈[0,1],总存在x1∈(0,+∞),使得g(x2)<F(x1),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若,求证:当时,
(2)若在区间上单调递增,试求的取值范围;
(3)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)设函数的极值.
(2)证明:上为增函数。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中.
(1)当时,求函数处的切线方程;
(2)若函数在区间(1,2)上不是单调函数,试求的取值范围;
(3)已知,如果存在,使得函数处取得最小值,试求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(Ⅰ)若在x=处的切线与直线4x+y=0平行,求a的值;
(Ⅱ)讨论函数的单调区间;
(Ⅲ)若函数的图象与x轴交于A,B两点,线段AB中点的横坐标为,证明

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是二次函数,不等式的解集是,且在点处的切线与直线平行.
(1)求的解析式;
(2)是否存在t∈N*,使得方程在区间内有两个不等的实数根?
若存在,求出t的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案