精英家教网 > 高中数学 > 题目详情
18.已知F1,F2是椭圆C:$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1的左右焦点,点P在椭圆上,且到左焦点F1的距离为6,过F1做∠F1PF2的角平分线的垂线,垂足为M,则OM的长为(  )
A.1B.2C.3D.4

分析 延长F1M和PF2交于N,求得椭圆的a=5,运用椭圆的定义和等腰三角形的三线合一,以及三角形的中位线定理,即可得到所求|OM|的值.

解答 解:延长F1M和PF2交于N,
椭圆C:$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1的a=5,
由椭圆的定义可得|PF1|+|PF2|=2a=10,
由|PF1|=6,可得|PF2|=4,
由等腰三角形的三线合一,可得
|PF1|=|PN|=6,
可得|NF2|=6-4=2,
由OM为△F1F2N的中位线,
可得|OM|=$\frac{1}{2}$|F2N|=$\frac{1}{2}$×2=1.
故选A.

点评 本题考查椭圆的定义、方程和性质,考查等腰三角形的性质和三角形的中位线定理的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.如图,直三棱柱ABC-A1B1C1中(侧棱垂直于底面),∠ABC=90°,且AB=BC=AA1,则BC1与面ACC1A1所成的角的大小为30°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)为奇函数,当x>0时,f(x)=lg(x+1),则f(-1)=-lg2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合A={1,2,3},B={2,3},则(  )
A.A=BB.A∩B=∅C.A⊆BD.B⊆A

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知曲线C的方程为kx2+(4-k)y2=k+1(k∈R).
(1)若曲线C是椭圆,求实数k的取值范围;
(2)若曲线C是双曲线,且有一条渐近线的倾斜角为$\frac{π}{3}$,求此双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若数列{an}满足a1=1,a2=2,an=an-1+an-2(n∈N*,n>2),则a6=(  )
A.13B.8C.21D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知A,B,C三点不共线,点O是平面ABC外的任意一点,若点P分别满足下列关系:
(1)$\overrightarrow{OA}$$+2\overrightarrow{OB}$=6$\overrightarrow{OP}$$-3\overrightarrow{OC}$;
(2)$\overrightarrow{OP}$$+\overrightarrow{OC}$=4$\overrightarrow{OA}$-$\overrightarrow{OB}$.
试判断点P是否与点A,B,C共面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.“x>y,且xy>0”是“$\frac{1}{x}$$<\frac{1}{y}$”的充分条件还是必要条件?试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在平行六面体ABCD-A′B′C′D′中,模与向量$\overrightarrow{A′B′}$的模相等的向量(不含$\overrightarrow{A′B′}$)有(  )
A.3个B.5个C.6个D.7个

查看答案和解析>>

同步练习册答案