精英家教网 > 高中数学 > 题目详情
13.若集合M={x|-1≤x<3},N={1,2,3},则M∩N等于(  )
A.{-1,0,1}B.{0,1,2}C.{1,2}D.{1,2,3}

分析 由M与N,求出两集合的交集即可.

解答 解:∵M={x|-1≤x<3},N={1,2,3},
∴M∩N={1,2},
故选:C.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知f(x)=|x-a|-a,a∈R
(1)当a=-2时,解不等式:f(x)<-$\frac{1}{2}$x+2;
(2)若f(x)的图象与x轴围成的图形的面积为9,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.f(x)=2sin$\frac{x}{4}$cos$\frac{x}{4}$$+\sqrt{3}$cos$\frac{x}{2}$(x∈R);
(1)求该函数最大值以及取得最大值时的x的取值;
(2)直线l倾斜角为θ,且f(θ)=2,l与坐标轴围成的三角形的面积为$\sqrt{3}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.将八进制数1001(8)转化为六进制数为(  )
A.2121(6)B.2212(6)C.2213(6)D.3122(6)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知α、β都是锐角,且sinα=$\frac{12}{13}$,cos(α+β)=-$\frac{4}{5}$,则cos2β=$-\frac{3713}{4225}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.用系统抽样的方法从个体数为1003的总体中抽取一个容量为50的样本,在整个抽样过程中每个个体被抽到的概率为(  )
A.$\frac{1}{1000}$B.$\frac{1}{1003}$C.$\frac{50}{1000}$D.$\frac{50}{1003}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某校从参加高三模拟考试的学生中随机抽取60名学生,按其数学成绩(均为整数)分成六组[90,100),[100,110),…,[140,150]后得到如下部分频率分布直方图,观察图中的信息,回答下列问题:
(Ⅰ)补全频率分布直方图;
(Ⅱ)估计本次考试的数学平均成绩(同一组中的数据用该组区间的中点值作代表);
(Ⅲ)用分层抽样的方法在分数段为[110,130)的学生成绩中抽取一个容量为6的样本,再从这6个样本中任取2人成绩,求至多有1人成绩在分数段[120,130)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.卵形线是常见曲线的一种,分笛卡尔卵形线和卡西尼卵形线,卡西尼卵形线是平面内与两个定点(叫做焦点)距离之积等于常数的点的轨迹.某同学类比椭圆与双曲线对卡西尼卵形线进行了相关性质的探究,设焦点F1(-c,0),F2(c,0)是平面内两个定点,|PF1|•|PF2|=a2(a是定长),得出卡西尼卵形线的相关结论:①既是轴对称图形也是中心对称图形;②若a=c,则曲线过原点;③若0<a<c,则曲线不存在;④若0<c<a,则a2-c2≤x2+y2≤a2+c2.其中正确命题的序号是①②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,已知AB是半圆O的直径,O是半圆圆心,AB=8,M、N、P是将半圆圆周四等分的三个分点.
(1)从A、B、M、N、P这5个点中任取3个点,求这3个点组成等腰三角形的概率;
(2)在半圆内任取一点S,求△SOB的面积大于4$\sqrt{2}$的概率.

查看答案和解析>>

同步练习册答案