精英家教网 > 高中数学 > 题目详情

【题目】已知f(x)是定义在[44]上的奇函数,当x(04]时,函数的解析式为 (aR),

(1)试求a的值;

(2)f(x)[-44]上的解析式;

(3)f(x)[-40)上的最值(最大值和最小值).

【答案】(1) (2) (3)最小值为-1,无最大值.

【解析】

(1)根据,利用奇函数的性质、对数运算的性质可以求出a的值;

(2)利用奇函数的性质可以求出f(x)[-44]上的解析式;

(3)利用函数的单调性可以判断出函数的最值情况.

(1)因为f(x)是定义在[44]上的奇函数,所以

.

(2)因为f(x)是定义在[44]上的奇函数,所以有.

,

.

所以f(x)[-44]上的解析式为:

(3) , ,因此当,函数有最小值,最小值为-1,函数没有最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求的定义域;

(2)判断的奇偶性并给予证明;

(3)求关于x的不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图四边形ABCD为菱形,GACBD交点,

(I)证明:平面平面

(II)若 三棱锥的体积为,求该三棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,过点垂直于轴的直线与抛物线相交于两点,抛物线两点处的切线及直线所围成的三角形面积为.

(1)求抛物线的方程;

(2)设是抛物线上异于原点的两个动点,且满足,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2017·衢州调研)已知四棱锥PABCD的底面ABCD是菱形,∠ADC120°AD的中点M是顶点P在底面ABCD的射影,NPC的中点.

(1)求证:平面MPB⊥平面PBC

(2)MPMC,求直线BN与平面PMC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,直线

(1)求证:直线过定点;

(2)求直线被圆所截得的弦长最短时的值;

(3)已知点,在直线MC上(C为圆心),存在定点N(异于点M),满足:对于圆C上任一点P,都有为一常数,试求所有满足条件的点N的坐标及该常数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P-ABC中, OAC的中点,

(1)证明:平面平面ABC

(2)若DAB的中点,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若对任意实数都有函数的图象与直线相切,则称函数为“恒切函数”,设函数,其中.

(1)讨论函数的单调性;

(2)已知函数为“恒切函数”,

①求实数的取值范围;

②当取最大值时,若函数也为“恒切函数”,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法:

①函数的图象和直线的公共点个数是,则的值可能是

②若函数定义域为且满足,则它的图象关于轴对称;

③函数的值域为

④若函数上有零点,则实数的取值范围是.

其中正确的序号是_________.

查看答案和解析>>

同步练习册答案