精英家教网 > 高中数学 > 题目详情

【题目】某地上年度电价为元,年用电量为亿千瓦时.本年度计划将电价调至之间,经测算,若电价调至元,则本年度新增用电量(亿千瓦时)与元成反比例.又当时,.

1)求之间的函数关系式;

2)若每千瓦时电的成本价为元,则电价调至多少时,本年度电力部门的收益将比上年增加[收益=用电量×(实际电价-成本价)]

【答案】1;(2 当电价调至元时,本年度电力部门的收益将比上年度增加

【解析】

试题(1)实际简单的应用问题列出反比例形式,代入数值就出结果了.(2)根据公式收益=用电量×(实际电价-成本价)列出式子.

试题解析:(1成反比例,

带入上式,得

之间的函数关系式为

2)根据题意,得

整理,得,解得.

经检验都是所列方程的根.

的取值范围是

不符合题意,应舍去..答:当电价调至元时,本年度电力部门的收益将比上年度增加

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】从某自动包装机包袋的食盐中,随机抽取袋作为样本,按各袋的质量(单位: )分成四组, ,相应的样本频率分布直方图如图所示.

Ⅰ)估计样本的中位数是多少?落入的频数是多少?

Ⅱ)现从这台自动包装机包袋的大批量食盐中,随机抽取,表示食盐质量属于的袋数,依样本估计总体的统计思想,的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】Ox2+y28内有一点P(﹣12),AB为过点P且倾斜角为α的弦,

1)当α135°时,求AB的长;

2)当弦AB被点P平分时,写出直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆轴负半轴相交于点,与轴正半轴相交于点.

1)若过点的直线被圆截得的弦长为,求直线的方程;

2)若在以为圆心半径为的圆上存在点,使得 (为坐标原点),求的取值范围;

3)设是圆上的两个动点,点关于原点的对称点为,点关于轴的对称点为,如果直线轴分别交于,问是否为定值?若是求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:极坐标与参数方程

在平面直角坐标系中,曲线的参数方程为为参数).

1)求曲线的普通方程;

2)经过点(平面直角坐标系中点)作直线交曲线两点,若恰好为线段的三等分点,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形CDEF为正方形,四边形ABCD为梯形,平面ABCD

BE与平面EAC所成角的正弦值;

线段BE上是否存在点M,使平面平面DFM?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,△PCD为等边三角形,平面PAC⊥平面PCDPACDCD=2AD=3.

1)设GH分别为PBAC的中点,求证:GH//平面PAD

2)求证:⊥平面PCD

3)求直线AD与平面PAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为 为焦点是的抛物线上一点, 为直线上任一点, 分别为椭圆的上,下顶点,且三点的连线可以构成三角形.

(1)求椭圆的方程;

(2)直线与椭圆的另一交点分别交于点,求证:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱锥的一条棱长为,其余棱长均为2,当三棱锥的体积最大时, 它的外接球的表面积为( )

A. B. C. D.

查看答案和解析>>

同步练习册答案