精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
8
3
x3-2x2+bx+a,g(x)=ln(1+2x)+x.
(1)求f(x)的单调区间.
(2)若f(x)与g(x)有交点,且在交点处的切线均为直线y=3x,求a,b的值并证明:在公共定义域内恒有f(x)≥g(x).
(3)设A(x1,g(x1)),B(x2,g(x2)),C(t,g(t))是y=g(x)图象上任意三点,且-
1
2
<x1<t<x2,求证:割线AC的斜率大于割线BC的斜率.
(1)f′(x)=8x2-4x+b,△=16-32b
①当△≤0即b≥
1
2
时,f′(x)≥0在R上恒成立,∴f(x)在(-∞,+∞)上单调递增;
②当△>0即b<
1
2
时,由f′(x)=0得x1=
1-
1-2b
4
,x2=
1+
1-2b
4

若f′(x)>0,则x<
1-
1-2b
4
或x>
1+
1-2b
4

若f′(x)>0,则
1-
1-2b
4
<x<
1+
1-2b
4

∴f(x)的单调增区间为:(-∞,
1-
1-2b
4
],[
1+
1-2b
4
,+∞);f(x) 的单调减区间为:[
1-
1-2b
4
1+
1-2b
4
]
综上所述:当b≥
1
2
时,f(x)在(-∞,+∞)上单调递增;当b<
1
2
时,f(x)的单调增区间为:(-∞,
1-
1-2b
4
],[
1+
1-2b
4
,+∞);f(x) 的单调减区间为:[
1-
1-2b
4
1+
1-2b
4
]
…(4分)
(2)g′(x)=
2
1+2x
+1=
3+2x
1+2x
,令g′(x)=3得:x=0,∴切点为(0,0),∴f(0)=0,∴a=0
∵f′(x)=8x2-4x+b|x=0=b=3,∴a=0,b=3         …(6分)
令φ(x)=f(x)-g(x),则φ′(x)=f′(x)-g′(x)=
16x3
1+2x

∴φ(x)在(-
1
2
,0)上单调递减,在(0,+∞)单调递增,
∴φ(x)≥φ(0)=f(0)-g(0)=0
∴φ(x)≥0   即:f(x)≥g(x)             …(8分)
(3)KAC=
g(t)-g(x1)
t-x1
,KBC=
g(t)-g(x2)
t-x2

令h(t)=(1+2t)(g(t)-g(x1))-(3+2t)(t-x1
则h′(t)=2 (g(t)-g(x1))+(1+2t)g′(t)-2(t-x1)-(3+2t)=2 (g(t)-g(x1))-2(t-x1)=2(ln(1+2t)-ln(1+2x1))
∵y=ln(1+2x)在(-
1
2
,+∞)上单调递增,且t>x1
∴ln(1+2t)-ln(1+2x1)>0,∴h′(t)>0
∴h(t)在(x1,t)上单调递增,∴h(t)>h(x1)=0
∴(1+2t)(f(t)-f(x1))-(3+2t)(t-x1)>0
∴(1+2t)(f(t)-f(x1))>(3+2t)(t-x1
∵t-x1>0,1+2t>0,∴
g(t)-g(x1)
t-x1
3+2t
1+2t
  即KAC
3+2t
1+2t

同理可证:KBC
3+2t
1+2t

∴KAC>KBC即割线AC的斜率大于割线BC的斜率;…(12分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2mx2-2(4-m)x+1,g(x)=mx,若对于任一实数x,f(x)与g(x)至少有一个为正数,则实数m的取值范围是(  )
A、(0,2)B、(0,8)C、(2,8)D、(-∞,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-3x2+1,g(x)=
x+
1
4x
,x>0
-x2-6x-8,x≤0
,则方程g[f(x)]-a=0(a为正实数)的根的个数不可能 为(  )
A、3个B、4个C、5个D、6个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2
3
sinxcosx+1-2sin2x,x∈R.
(1)求函数f(x)的最小正周期和单调递增区间;
(2)将函数y=f(x)的图象上各点的纵坐标保持不变,横坐标缩短到原来的
1
2
,把所得到的图象再向左平移
π
6
单位,得到的函数y=g(x)的图象,求函数y=g(x)在区间[0,
π
8
]
上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)满足f(2-x)=2-f(x+2),若f-1(4)=8,则f(-4)的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a2-x-8(a>0,且a≠1),
(1)判断函数f(x)的奇偶性;   
(2)若x∈[1,+∞),求f(x)的值域.

查看答案和解析>>

同步练习册答案