精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,曲线C的参数方程为为参数).以原点为极点,x轴的非负半轴为极轴,建立极坐标系.

1)求曲线C的极坐标方程;

2)直线t为参数)与曲线C交于AB两点,求最大时,直线l的直角坐标方程.

【答案】1;(2.

【解析】

1)利用消去参数,得到曲线的普通方程,再将代入普通方程,即可求出结论;

2)由(1)得曲线表示圆,直线曲线C交于AB两点,最大值为圆的直径,直线过圆心,即可求出直线的方程.

1)由曲线C的参数方程为参数),

可得曲线C的普通方程为

因为

所以曲线C的极坐标方程为

.

2)因为直线t为参数)表示的是过点的直线,

曲线C的普通方程为

所以当最大时,直线l经过圆心.

直线l的斜率为,方程为

所以直线l的直角坐标方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,已知棱两两垂直,长度分别为1,2,2.若),且向量夹角的余弦值为.

(1)求的值;

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知O为坐标原点,抛物线Cy2=8x上一点A到焦点F的距离为6,若点P为抛物线C准线上的动点,则|OP|+|AP|的最小值为(  )

A. 4B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】谢宾斯基三角形是一种分形,由波兰数学家谢宾斯基在1915年提出,先作一个正三角形.挖去一个“中心三角形”(即以原三角形各边的中点为顶点的三角形),然后在剩下的小三角形中又挖去一个“中心三角形”,我们用白色代表挖去的面积,那么黑三角形为剩下的面积(我们称黑三角形为谢宾斯基三角形).向图中第5个大正三角形中随机撒512粒大小均匀的细小颗粒物,则落在白色区域的细小颗粒物的数量约是(

A.256B.350C.162D.96

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过椭圆的四个顶点与坐标轴垂直的四条直线围成的矩形是第一象限内的点)的面积为,且过椭圆的右焦点的倾斜角为的直线过点

1)求椭圆的标准方程

2)若射线与椭圆的交点分别为.当它们的斜率之积为时,试问的面积是否为定值?若为定值,求出此定值;若不为定值,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是矩形,平面的中点,连接.

1)求证:

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知直三棱柱的底面为等腰直角三角形,点为线段的中点.

1)探究直线与平面的位置关系,并说明理由;

2)若,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于数列,把和叫做数列的前项泛和,记作为.已知数列的前项和为,且.

1)求数列的通项公式;

2)数列与数列的前项的泛和为,且恒成立,求实数的取值范围;

3)从数列的前项中,任取项从小到大依次排列,得到数列;再将余下的项从大到小依次排列,得到数列.求数列与数列的前项的泛和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCDA1B1C1D1中,ED1D的中点,ACBD的交点为O

1)求证:EO⊥平面AB1C

2)在由正方体的顶点确定的平面中,是否存在与平面AB1C平行的平面?证明你的结论

查看答案和解析>>

同步练习册答案