精英家教网 > 高中数学 > 题目详情

【题目】如图,在正三棱柱中,AB=3=4M的中点,PBC边上的一点,且由点P沿棱柱侧面经过棱M点的最短路线长为,设这条最短路线与的交点为N,求

1)该三棱柱的侧面展开图的对角线长.

2PCNC的长

3)平面NMP与平面ABC所成二面角(锐角)的大小(用反三角函数表示)

【答案】(1)(2)PC=2NC= (3)

【解析】

1)由展开图为矩形,用勾股定理求对角线长.
2)在侧面展开图中三角形MAP是直角三角形,可以求出线段AP的长度,进而可以求出PC的长度,再由相似比可以求得CN的长度.
3)补形,找出两面的交线,由三垂线定理作出二面角的平面角,二面角易求.

解:(1)正三棱柱的侧面展开图是一个长为9,宽为4的矩形

故其对角线长为

(2)如图,将侧面绕棱旋转120使其与侧面在同一平面上,P运动到点的位置,连接,就是由点P沿棱柱侧面经过棱到点M的最短路线

,在由勾股定理得x=2,

(3)如图,连接,则就是平面NMP与平面ABC的交线,NHH,⊥平面ABC,连接CH,由三垂线定理得,CH

∴∠NHC就是平面NMP与平面ABC所成二面角的平面角(锐角),

,

,

故平面NMP与平面ABC所成二面角(锐角)的大小为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知等腰三角形△ABC的两腰ABAC所在直线的方程分别为是底边BC上一点,求:

(1)底边BC所在直线的方程;

(2)△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一般来说,一个人脚掌越长,他的身高就越高,现对10名成年人的脚掌与身高进行测量,得到数据(单位:cm)作为样本如表所示:

脚掌长(

20

21

22

23

24

25

26

27

28

29

身高(

141

146

154

160

169

176

181

188

197

203

(1)在上表数据中,以“脚掌长”为横坐标,“身高”为纵坐标,作出散点图后,发现散点在一条直线附近,试求“身高”与“脚掌长”之间的线性回归方程

(2)若某人的脚掌长为26.5cm,试估计此人的身高;

(3)在样本中,从身高180cm以上的4人中随机抽取2人进行进一步的分析,求所抽取的2人中至少有1人身高在190cm以上的概率.

(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, ODE的中点,F的中点,平面平面BCED

1)求证:平面 平面

2)线段OC上是否存在点G,使得平面EFG?说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,四边形为正方形,.

(1)证明:平面平面.

(2)若平面,二面角,三棱锥的外接球的球心为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为平行四边形,的中点,平面的中点,

1)证明:平面

2)如果二面角的正切值为2,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,抛物线的准线被椭圆截得的线段长为

(1)求椭圆的方程;

(2)如图,点分别是椭圆的左顶点、左焦点直线与椭圆交于不同的两点都在轴上方).且.证明:直线过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汕尾市基础教育处为调查在校中学生每天放学后的自学时间情况,在本市的所有中学生中随机抽取了120名学生进行调查,现将日均自学时间小于1小时的学生称为“自学不足”者根据调查结果统计后,得到如下列联表,已知在调查对象中随机抽取1人,为“自学不足”的概率为

非自学不足

自学不足

合计

配有智能手机

30

没有智能手机

10

合计

请完成上面的列联表;

根据列联表的数据,能否有的把握认为“自学不足”与“配有智能手机”有关?

附表及公式: ,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于集合,定义函数对于两个集合,定义集合. 已知, .

(Ⅰ)写出的值,并用列举法写出集合;

(Ⅱ)用表示有限集合所含元素的个数,求的最小值;

(Ⅲ)有多少个集合对,满足,且?

查看答案和解析>>

同步练习册答案