精英家教网 > 高中数学 > 题目详情
5.函数f(x)=log2x+$\frac{x}{3}$-3 的零点所在区间为(  )
A.(0,1)B.)(1,2 )C.( 2,3 )D.( 3,4 )

分析 由题意知函数f(x)=log2x+$\frac{x}{3}$-3在(0,+∞)上连续,再由函数的零点的判定定理求解.

解答 解:函数f(x)=log2x+$\frac{x}{3}$-3在(0,+∞)上连续,
f(3)=log23+1-3<0;
f(4)=log24+$\frac{4}{3}$-3>0;
故函数f(x)=log2x+$\frac{x}{3}$-3的零点所在的区间是(3,4).
故选:D.

点评 本题考查了函数的零点的判定定理的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.求y=$\frac{sinx-2}{cosx-2}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右顶点分别为A1,A2,且|A1A2|=4$\sqrt{3}$,P为椭圆上异于A1,A2的点,PA1和PA2的斜率之积为-$\frac{1}{3}$.以M(-3,2)为圆心,r为半径的圆与椭圆C交于A,B两点.
(1)求椭圆C的方程;
(2)若A,B两点关于原点对称,求圆M的方程;
(3)若点A的坐标为(0,2),求△ABM的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.若曲线C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),(y≤0)的离心率e=$\frac{\sqrt{3}}{2}$且过点P(2$\sqrt{3}$,-1),曲线C2:x2=4y,自曲线C1上一点A作C2的两条切线切点分别为B,C.
(Ⅰ)求曲线C1的方程;
(Ⅱ)求S△ABC的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.椭圆kx2+8ky2=8的一个焦点为$(\sqrt{21},0)$,则k的值为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数y=$\frac{2}{1-\sqrt{1-x}}$的定义域为(  )
A.(-∞,1)B.(-∞,0)∪(0,1]C.(-∞,0)∪(0,1)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设等比数列{an}的前n项和为Sn,若S3+S6=S9,则公比q=(  )
A.1或-1B.1C.-1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若g(x)=1-2x,f(g(x))=$\frac{1-x^2}{x^2}$,则f($\frac{1}{2}$)的值为(  )
A.1B.15C.4D.30

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x2+2ax+a+1.
(1)当a=1时,求函数在区间[-2,3]上的值域;
(2)函数f(x)在[-5,5]上单调,求实数a的取值范围;
(3)求函数f(x)在[0,2]上的最小值g(a)的解析式.

查看答案和解析>>

同步练习册答案