如图,直线y=kx+b与椭圆交于A、B两点,记△AOB的面积为S.
(1)求在k=0,0<b<1的条件下,S的最大值;
(2)当|AB|=2,S=1时,求直线AB的方程.
(1)1;(2)或或或.
【解析】
试题分析:(1)直线与椭圆(圆锥曲线)相交和直线与圆相交的问题有区别,直线与圆相交可以利用圆的一些性质,用几何方法解决问题,而直线与椭圆(圆锥曲线)相交只能用解析法解题。这里直接求出两点有坐标(用表示),求出三角形的面积,相当于把的面积表示成了的函数,然后用不等式的知识或函数知识求出最大值。(2)同样把直线方程与椭圆方程联立,消去,得出关于的二次方程,两点的横坐标就是这个方程的两解,故必须满足,而线段的长,再求出原点到直线的距离,利用面积,列出关于的方程组,解出,即直线的方程。
试题解析:解:设点A的坐标为(,点B的坐标为,
由,解得
所以
当且仅当时,.S取到最大值1.
(Ⅱ)解:由得
①
|AB|= ②
又因为O到AB的距离 所以 ③
③代入②并整理,得
解得,,代入①式检验,△>0
故直线AB的方程是
或或或.
考点:直线与椭圆相交,弦长公式。
科目:高中数学 来源: 题型:
如图,直线y=kx+b与椭圆交于A、B两点,记△AOB的面积为S.
(I)求在k=0,0<b<1的条件下,S的最大值;
(Ⅱ)当|AB|=2,S=1时,求直线AB的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
(I)求在k=0,0<b<1的条件下,S的最大值;
(Ⅱ)当|AB|=2,S=1时,求直线AB的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题14分)如图,直线y=kx+b与椭圆交于A、B两点,记△AOB的面积为S.
(I)求在k=0,0<b<1的条件下,S的最大值;
(Ⅱ)当|AB|=2,S=1时,求直线AB的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题14分)如图,直线y=kx+b与椭圆交于A、B两点,记△AOB的面积为S.
(I)求在k=0,0<b<1的条件下,S的最大值;
(Ⅱ)当|AB|=2,S=1时,求直线AB的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com